Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial antigen presenting cells (aAPC) are a promising platform for immune modulation due to their potent ability to stimulate T cells. Acellular substrates offer key advantages over cell-based aAPC, including precise control of signal presentation parameters and physical properties of the aAPC surface to modulate its interactions with T cells. aAPC constructed from anisotropic particles, particularly ellipsoidal particles, have been shown to be more effective than their spherical counterparts at stimulating T cells due to increased binding and larger surface area available for T cell contact, as well as reduced nonspecific uptake and enhanced pharmacokinetic properties. Despite increased interest in anisotropic particles, even widely accepted methods of generating anisotropic particles such as thin-film stretching can be challenging to implement and use reproducibly. To this end, we describe a protocol for the rapid, standardized fabrication of biodegradable anisotropic particle-based aAPC with tunable size, shape, and signal presentation for T cell expansion ex vivo or in vivo, along with methods to characterize their size, morphology, and surface protein content, and to assess their functionality. This approach to fabricating anisotropic aAPC is scalable and reproducible, making it ideal for generating aAPC for "off-the-shelf" immunotherapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235518 | PMC |
http://dx.doi.org/10.3791/58332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!