In this paper, we describe a simple and highly efficient module for image classification, which we term the "Attention Inspiring Receptive-fields" (Air) module. We effectively convert the spatial attention mechanism into a plug-in module. In addition, we reveal the relationship between the spatial attention mechanism and the receptive fields, indicating that the proper use of the spatial attention mechanism can effectively increase the receptive fields of the module, which is able to enhance translation invariance and scale invariance of the network. By integrating the Air module into advanced convolutional neural networks (such as ResNet and ResNeXt), we can construct AirNet architectures for learning invariant representations and gain significant improvements on challenging data sets. We present extensive experiments on CIFAR and ImageNet data sets to verify the effectiveness and feature invariance of the Air module and explore more concise and efficient designs of the proposed module. On ImageNet classification, our AirNet-50 and AirNet-101 (ResNet-50/101 with Air module) achieve 1.69% and 1.50% top-1 accuracy improvement with a small amount of extra computation and parameters compared with the original ResNet. We make models and code public available https://github.com/soeaver/AirNet-PyTorch. We further demonstrate that AirNet has a good ability for transfer learning and measure the performance on Microsoft Common Objects in Context object detection, instance segmentation, and pose estimation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2018.2873722DOI Listing

Publication Analysis

Top Keywords

air module
16
spatial attention
12
attention mechanism
12
learning invariant
8
invariant representations
8
module
8
receptive fields
8
data sets
8
attention
4
attention inspiring
4

Similar Publications

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

A Miniaturized and Ultra-Low-Power Wireless Multi-Parameter Monitoring System with Self-Powered Ability for Aircraft Smart Skin.

Sensors (Basel)

December 2024

Research Center of Structural Health Monitoring and Prognosis, State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

The aircraft smart skin (ASS) with structural health monitoring capabilities is a promising technology. It enables the real-time acquisition of the aircraft's structural health status and service environment, thereby improving the performance of the aircraft and ensuring the safety of its operation, which in turn reduces maintenance costs. In this paper, a miniaturized and ultra-low-power wireless multi-parameter monitoring system (WMPMS) for ASS is developed, which is capable of monitoring multiple parameters of an aircraft, including random impact events, vibration, temperature, humidity, and air pressure.

View Article and Find Full Text PDF

This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set.

View Article and Find Full Text PDF

Study on the Abrasive Blasting Mechanism of Solder Welded 304V Wire in Vascular Intervention.

Micromachines (Basel)

November 2024

Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China.

The solder burrs on the 304V wire surface can easily scratch the vascular tissue during interventional treatment, resulting in complications such as medial tears, bleeding, dissection, and rupture. Abrasive blasting is often used to remove solder burr and obtain a smooth surface for the interventional device. This study conducted an abrasive blasting experiment to explore the effects of process parameters (air pressure, lift-off height, abrasive volume, and abrasive type) on processing time, surface roughness, and mechanical properties to reveal the material removal mechanism.

View Article and Find Full Text PDF

A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!