Background Mechanical stimulation of acute ischemic myocardium by shock wave therapy ( SWT ) is known to improve cardiac function by induction of angiogenesis. However, SWT in chronic heart failure is poorly understood. We aimed to study whether mechanical stimulation upon SWT improves heart function in chronic ischemic heart failure by induction of angiogenesis and postnatal vasculogenesis and to dissect underlying mechanisms. Methods and Results SWT was applied in a mouse model of chronic myocardial ischemia. To study effects of SWT on postnatal vasculogenesis, wild-type mice received bone marrow transplantation from green fluorescence protein donor mice. Underlying mechanisms were elucidated in vitro in endothelial cells and murine aortic rings. Echocardiography and pressure/volume measurements revealed improved left ventricular ejection fraction, myocardial contractility, and diastolic function and decreased myocardial fibrosis after treatment. Concomitantly, numbers of capillaries and arterioles were increased. SWT resulted in enhanced expression of the chemoattractant stromal cell-derived factor 1 in ischemic myocardium and serum. Treatment induced recruitment of bone marrow-derived endothelial cells to the site of injury. In vitro, SWT resulted in endothelial cell proliferation, enhanced survival, and capillary sprouting. The effects were vascular endothelial growth factor receptor 2 and heparan sulfate proteoglycan dependent. Conclusions SWT positively affects heart function in chronic ischemic heart failure by induction of angiogenesis and postnatal vasculogenesis. SWT upregulated pivotal angiogenic and vasculogenic factors in the myocardium in vivo and induced proliferative and anti-apoptotic effects on endothelial cells in vitro. Mechanistically, these effects depend on vascular endothelial growth factor signaling and heparan sulfate proteoglycans. SWT is a promising treatment option for regeneration of ischemic myocardium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474945PMC
http://dx.doi.org/10.1161/JAHA.118.010025DOI Listing

Publication Analysis

Top Keywords

heart failure
16
chronic ischemic
12
ischemic heart
12
ischemic myocardium
12
induction angiogenesis
12
postnatal vasculogenesis
12
endothelial cells
12
swt
10
shock wave
8
wave therapy
8

Similar Publications

Aims: To investigate the distribution of left atrioventricular coupling index (LACI) among patients with heart failure and left ventricular ejection fraction (LVEF)<50% and to explore its association with the combined endpoint of all-cause death or HF hospitalization at long term follow-up.

Methods And Results: Patients with HF and LVEF<50% undergoing cardiac magnetic resonance (CMR) were evaluated. Patients with atrial fibrillation or flutter were excluded.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Rationale: Thrombotic microangiopathies (TMA) caused by malignant hypertension is an acute and critical disease among rare diseases. Although renal biopsy pathology is a golden indicator for diagnosing kidney disease, it cannot distinguish between primary and secondary TMA and requires a comprehensive diagnosis in conjunction with other laboratory tests and medical history.

Patient Concerns: A 33-year-old young man was hospitalized due to unexplained kidney failure.

View Article and Find Full Text PDF

This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!