Intermediate filaments (IFs) are known for their extensibility, flexibility, toughness, and their ability to hydrate. Using keratin-like IFs obtained from slime fibers from the invertebrate Atlantic hagfish ( Myxine glutinosa), films were produced by drop-casting and coagulation on the surface of a MgCl buffer. Drop-casting produced self-supporting, smooth, and dense films rich in β-sheets (61%), whereas coagulation formed thin, porous films with a nanorough surface and a lower β-sheet content (51%). The films hydrated and swelled immediately when immersed in water and did not dissolve. X-ray diffraction showed that the β-crystallites remained stable upon hydration, that swelling presumably happens in the amorphous C-terminal tail-domains of the IFs, and that high salt conditions caused a denser network mesh size, suggesting polyelectrolyte behavior. Hydration resulted in a roughly 1000-fold decrease in apparent Young's modulus from 10 to 10 Pa as revealed by atomic force microscopy nanoindentation. Nanoindentation-based power-law rheology and stress-relaxation measurements indicated viscoelasticity and a soft-solid hydrogel character for hydrated films, where roughly 80% of energy is elastically stored and 20% is dissipated. By pulling coagulation films from the buffer interface, macroscopic fibers with highly aligned IF β-crystals similar to natural hagfish fibers were produced. We propose that viscoelasticity and strong hydrogen bonding interactions with the buffer interface are crucial for the production of such long biomimetic fibers with aligned β-sheets. This study demonstrates that hagfish fiber IFs can be reconstituted into functional biomimetic materials that are stiff when dry and retain the ability to hydrate to become soft and viscoelastic when in water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b17166DOI Listing

Publication Analysis

Top Keywords

fibers produced
8
slime fibers
8
ability hydrate
8
buffer interface
8
films
7
fibers
6
structure nanomechanics
4
nanomechanics dry
4
dry hydrated
4
hydrated intermediate
4

Similar Publications

Microplastics levels in cultured or harvested mollusks non-depurated and commercially depurated at different times.

Mar Pollut Bull

January 2025

Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain. Electronic address:

Microplastics (MPs) are emerging pollutants found worldwide, not only in environmental matrices but also in the food web. The present study aimed to establish better removal rates of MPs in cultivated or harvested edible bivalves currently on the market. Samples of three species (mussels, oysters and wedge clams) were collected from a producer at three different depuration times.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.

View Article and Find Full Text PDF

Ethyl cellulose (EC) is a biocompatible, renewable, and recyclable material with diverse sources, making it an attractive candidate for industrial applications. Electrospinning has gained significant attention for the production of EC fibers. However, conventional electrospinning methods face challenges such as bead formation, low yield, and the absence of porous internal structures, limiting both the functional performance and scalability.

View Article and Find Full Text PDF

With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!