Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The facile hydrothermal synthesis of Zn In S atomically thin nanosheet arrays on fluorine-doped tin oxide glass (FTO) substrates is presented. Through controlling heat treatment in air, O-doping and Zn, S vacancies were simultaneously introduced in Zn In S nanosheets with adjusted phase, morphology, chemical compositions, and energy level distribution. The surface defect states are passivated by depositing ultrathin Al O film by atomic layer deposition technology. The performance of Zn In S photoanodes is largely improved, with 4.7 times higher current density and reduced onset potential. The experimental results and density functional theory calculations indicate that the enhancement is attributed to the fast photoexcited electron-hole pair separation, decreased surface transfer impedance, prolonged carrier lifetime, and reduced overpotential of oxygen evolution reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201811632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!