Microglia are the resident immune cell of the central nervous system (CNS), and serve to protect and maintain the local brain environment. Microglia are critically dependent on signaling through the colony-stimulating factor 1 receptor (CSF1R); administration of CSF1R inhibitors that cross the blood brain barrier (BBB) lead to the elimination of up to 99% of microglia, depending on CNS exposure and treatment duration. Once microglia are depleted, withdrawal of inhibitor stimulates repopulation of the entire CNS with new cells, conceivably enabling a therapeutic strategy for beneficial renewal of the entire microglial tissue. We have explored the kinetics and limits of this repopulation event and show that the rate of microglial repopulation is proportional to the extent of microglial depletion - greater depletion of microglia results in more rapid repopulation. Using a CSF1R inhibitor formulation that eliminates approximately 99% of microglia within 7 days, we subjected mice to multiple rounds of elimination (7 days' treatment) and repopulation (7 days' recovery) and found that the brain only has the capacity for a single complete repopulation event; subsequent elimination and CSF1R inhibitor withdrawal fail to repopulate the brain. However, if the recovery time between, or after, cycles is extended sufficiently then the brain can ultimately repopulate. These kinetic studies define the opportunities and possible limits of the remarkable renewal capacities of microglia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269202 | PMC |
http://dx.doi.org/10.1002/glia.23477 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!