The model haloarchaeon, Haloferax volcanii possess an extremely high, and highly specific, basal caspase activity in exponentially growing cells that closely resembles caspase-4. This activity is specifically inhibited by the pan-caspase inhibitor, z-VAD-FMK, and has no cross-reactivity with other known protease families. Although it is one of the dominant cellular proteolytic activities in exponentially growing H. volcanii cells, the interactive cellular roles remain unknown and the protein(s) responsible for this activity remain elusive. Here, biochemical purification and in situ trapping with caspase targeted covalent inhibitors combined with genome-enabled proteomics, structural analysis, targeted gene knockouts and treatment with canavanine demonstrated a catalytic linkage between caspase activity and thermosomes, proteasomes and cdc48b, a cell division protein and proteasomal degradation facilitating ATPase, as part of an 'interactase' of stress-related protein complexes with an established link to the unfolded protein response (UPR). Our findings provide novel cellular and biochemical context for the observed caspase activity in Archaea and add new insight to understanding the role of this activity, implicating their possible role in the establishment of protein stress and ER associated degradation pathways in Eukarya.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14456DOI Listing

Publication Analysis

Top Keywords

caspase activity
16
catalytic linkage
8
linkage caspase
8
exponentially growing
8
activity
7
caspase
5
activity proteostasis
4
proteostasis archaea
4
archaea model
4
model haloarchaeon
4

Similar Publications

L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of L.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.

View Article and Find Full Text PDF

Unlabelled: Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and hepatoprotective properties.

Background/objectives: This study aimed to investigate the antioxidant, antiapoptotic, and anti-inflammatory effects of clove oil (CLO) against hepatorenal toxicity induced by cadmium (Cd).

View Article and Find Full Text PDF

This review evaluates the cytotoxic potential of the genus, with a focus on , , and . These species, known for their diverse phytochemical compositions, exhibit notable cytotoxic effects that suggest their utility in natural cancer treatments. Compounds such as quercetin, kaempferol, and sesbagrandiforian A and B have been highlighted for their strong antioxidant and antiproliferative effects, further emphasizing their therapeutic potential.

View Article and Find Full Text PDF

Phytochemical and Biological Investigations of Crude Extracts of .

Pharmaceuticals (Basel)

December 2024

Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey.

: L. is a genus of the Fabaceae family, encompassing over 3000 species globally, with 380 species found in Turkey. This is the inaugural examination of the phytochemical, antioxidant, antibacterial, and cytotoxic properties of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!