The most abundant and ubiquitous microbes in the surface ocean use light as an energy source, capturing it via complex chlorophyll-based photosystems or simple retinal-based rhodopsins. Studies in various ocean regimes compared the abundance of these mechanisms, but few investigated their expression. Here we present the first full seasonal study of abundance and expression of light-harvesting mechanisms (proteorhodopsin, PR; aerobic anoxygenic photosynthesis, AAnP; and oxygenic photosynthesis, PSI) from deep-sequenced metagenomes and metatranscriptomes of marine picoplankton (<1 µm) at three coastal stations of the San Pedro Channel in the Pacific Ocean. We show that, regardless of season or sampling location, the most common phototrophic mechanism in metagenomes of this dynamic region was PR (present in 65-104% of the genomes as estimated by single-copy recA), followed by PSI (5-104%) and AAnP (5-32%). Furthermore, the normalized expression (RNA to DNA ratio) of PR genes was higher than that of oxygenic photosynthesis (average ± standard deviation 26.2 ± 8.4 vs. 11 ± 9.7), and the expression of the AAnP marker gene was significantly lower than both mechanisms (0.013 ± 0.02). We demonstrate that PR expression was dominated by the SAR11-cluster year-round, followed by other Alphaproteobacteria, unknown-environmental clusters and Gammaproteobacteria. This highly dynamic system further allowed us to identify a trend for PR spectral tuning, in which blue-absorbing PR genes dominate in areas with low chlorophyll- concentrations (<0.25 µgL). This suggests that PR phototrophy is not an accessory function but instead a central mechanism that can regulate photoheterotrophic population dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202958 | PMC |
http://dx.doi.org/10.7717/peerj.5798 | DOI Listing |
Harmful Algae
December 2024
NSF-IRES 2022 Lake Victoria Research Consortium, USA; Great Lakes Center for Fresh Waters and Human Health, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA; Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA. Electronic address:
Despite the global expansion of cyanobacterial harmful algal blooms (cHABs), research is biased to temperate systems within the global north, such as the Laurentian Great Lakes. This lack of diversity represents a significant gap in the field and jeopardizes the health of those who reside along at-risk watersheds in the global south. The African Great Lake, Lake Victoria, is understudied despite serving as the second largest lake by surface area and demonstrating year-round cHABs.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
Planktonic unicellular cyanobacteria are the dominant biomass producers and carbon fixers in the global ocean ecosystem, but they are not abundant in polar seawater. The interseasonal dynamics of picocyanobacterial (PC) abundance, picophytoplankton primary production, and phylogenetic diversity of PC were studied in the sub-Arctic White Sea. The PC abundance varied from 0.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2024
Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa.
Nano-picoplankton are the dominant primary producers during the postupwelling period in St Helena Bay, South Africa. Their dynamics on short timescales are not well-understood and neither are the community composition, structure, and potential functionality of the surrounding microbiome. Samples were collected over five consecutive days in March 2018 from three depths (1, 25, and 50 m) at a single sampling station in St Helena Bay.
View Article and Find Full Text PDFThe Arctic warming leads to a decline in sea-ice extent and thickness, rapid warming and freshening of the sea surface which impact the distribution of phytoplankton size composition. Picophytoplankton is an ecologically important component of Arctic pelagic marine ecosystems, and its role may be altered by global warming. In this study, the abundance and biomass, the chlorophyll a (Chl-a) and primary production (PP) of picophytoplankton, and its spatial and temporal distribution were investigated in the Kara Sea during the ice-melt season in July 2019.
View Article and Find Full Text PDFHeliyon
September 2024
University of Zagreb, Faculty of Science, Department of Geophysics, Horvatovac 95, 10000, Zagreb, Croatia.
The oligotrophic Adriatic Sea is characterized during a typical summer by low productivity caused by strong water column stratification, which inhibits vertical mixing and nutrient supply to the euphotic zone. These conditions can be disrupted by transient physical forcing, which enhances nutrient fluxes and creates localized hotspots of relatively high net primary production. In this study, plankton abundance and diversity were investigated in relation to the physical forcing and nutrient concentrations in an area affected by island-trapped waves (ITWs) near Lastovo Island (Adriatic Sea).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!