We reported that microRNA-155 (miR-155) deficiency in ApoE-/- mice yields a novel metabolically healthy obese (MHO) model, which exhibits improved atherosclerosis but results in obesity, non-alcoholic fatty liver disease (NAFLD) without insulin resistance. Using experimental data mining approaches combined with experiments, we found that, among 109 miRNAs, miR-155, and miR-221 are significantly modulated in all four hyperlipidemia-related diseases (HRDs), namely atherosclerosis, NAFLD, obesity and type II diabetes (T2DM). MiR-155 is significantly upregulated in atherosclerosis and decreased in other HRDs. MiR-221 is increased in three HRDs but reduced in obesity. These findings led to our new classification of types I and II MHOs, which are regulated by miR-221 and miR-155, respectively. Western blots showed that the proinflammatory adipokine, resistin, is significantly increased in white adipose tissues (WAT) of the MHO mice, revealing our newly proposed, miR-155-suppressed "secondary wave inflammatory state (SWIS)," characteristic of MHO transition to classical obesity (CO). Taken together, we are first to show that MHO may have heterogeneity in comorbidities, and is therefore classified into type I, and type II MHOs; and that increased expression of resistin in miR-155-/- white adipose tissues may be a driver for SWIS in MHO transition to CO. Our findings provide novel insights into the pathogenesis of MHO, MHO transition to CO, hyperlipidemic pathways related to cancer, and new therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194169PMC
http://dx.doi.org/10.3389/fphys.2018.01297DOI Listing

Publication Analysis

Top Keywords

white adipose
12
adipose tissues
12
mho transition
12
increased expression
8
expression resistin
8
tissues driver
8
metabolically healthy
8
transition classical
8
classical obesity
8
mho
7

Similar Publications

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex disorder and multiple cellular and molecular mechanisms are involved in AD onset and progression. Recent evidences have suggested that metabolic alterations are an important pathological feature in disease progression in AD. Likewise, diabetes and obesity, two mayor metabolic illnesses, are risk factors for AD.

View Article and Find Full Text PDF

Adenylate kinase 5 deficiency impairs epididymal white adipose tissue homeostasis and decreases fat mass.

J Vet Sci

December 2024

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.

Importance: The brain and adipose tissue interact metabolically, and if there is a problem with the energy metabolism of the brain, it cannot maintain the energy balance with the adipose tissue. Therefore, when adenylate kinase 5 (), which regulates energy metabolism in the brain, is knocked out, problems with lipid metabolism may occur.

Objective: We aimed to elucidate the metabolic function and phenotype of , a gene with an unknown function in metabolism.

View Article and Find Full Text PDF

IDOL alleviates the body weight by upregulating UCP-1 in mice.

Diabetes Obes Metab

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.

Background: Given the potential role of brown adipose tissue (BAT) in stimulating energy expenditure, activating BAT can be an effective anti-obesity treatment. Here, we aimed to use adenoviruses to establish the effect of the inducible degrader of the low density lipoprotein receptor (IDOL) in the formation of BAT.

Methods: IDOL or green fluorescent protein was overexpressed by adenovirus and injected into the scapula of C57BL/6J mice and fed with high-fat diet for 12 weeks.

View Article and Find Full Text PDF

Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism.

Cell Res

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.

Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!