AI Article Synopsis

  • The paper discusses a study on using ensemble crop model outputs to create probabilistic forecasts for agricultural variables like precipitation, evapotranspiration, crop yields, and green water footprints (GWFs) over monthly and seasonal periods.
  • It focuses on winter wheat growth in Austria and Serbia from 2006 to 2014, utilizing data from the SIRIUS crop model and historical seasonal weather forecasts.
  • The findings suggest that seasonal weather forecasting can help optimize agricultural practices by providing advanced predictions of crop development and yield, ultimately improving field operations like irrigation and fertilization.

Article Abstract

A probabilistic crop forecast based on ensembles of crop model output (CMO) estimates offers a myriad of possible realizations and probabilistic forecasts of green water components (precipitation and evapotranspiration), crop yields and green water footprints (GWFs) on monthly or seasonal scales. The present paper presents part of the results of an ongoing study related to the application of ensemble forecasting concepts for agricultural production. The methodology used to produce the ensemble CMO using the ensemble seasonal weather forecasts as the crop model input meteorological data without the perturbation of initial soil or crop conditions is presented and tested for accuracy, as are its results. The selected case study is for winter wheat growth in Austria and Serbia during the 2006-2014 period modelled with the SIRIUS crop model. The historical seasonal forecasts for a 6-month period (1 March-31 August) were collected for the period 2006-2014 and were assimilated from the European Centre for Medium-range Weather Forecast and the Meteorological Archival and Retrieval System. The seasonal ensemble forecasting results obtained for winter wheat phenology dynamics, yield and GWF showed a narrow range of estimates. These results indicate that the use of seasonal weather forecasting in agriculture and its applications for probabilistic crop forecasting can optimize field operations (e.g., soil cultivation, plant protection, fertilizing, irrigation) and takes advantage of the predictions of crop development and yield a few weeks or months in advance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199547PMC
http://dx.doi.org/10.1017/S0021859617000788DOI Listing

Publication Analysis

Top Keywords

green water
12
winter wheat
12
crop model
12
crop
9
water components
8
crop yields
8
probabilistic crop
8
ensemble forecasting
8
seasonal weather
8
seasonal
6

Similar Publications

A Comprehensive Understanding of Tea Metabolome: From Tea Plants to Processed Teas.

Annu Rev Food Sci Technol

January 2025

4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:

Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.

View Article and Find Full Text PDF

Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.

View Article and Find Full Text PDF

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters.

Nanoscale

January 2025

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.

View Article and Find Full Text PDF

Development of Triphenylamine Derived Photosensitizers for Efficient Hydrogen Evolution from Water.

Chemistry

January 2025

The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong (P.R. China), 000000, Hong Kong, HONG KONG.

A series of new (donor)₂-donor-π-acceptor (D2-D-π-A) and (acceptor)₂-donor-π-acceptor (A2-D-π-A) organic photosensitizers based on the framework of (Z)-2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic acid have been synthesized and characterized. By incorporating groups with different electron-donating or withdrawing abilities, such as dibenzothiophene (DBT), dibenzofuran (DBF), and triazine (TA), into the triphenylamine segment, their photophysical properties have been regulated.  Theoretical calculations were used to explore how various donor-acceptor combinations influence their hydrogen production performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!