As a prototype tool for slot-die coating, blade-coating exhibits excellent compatibility with large-area roll-to-roll coating. A ternary organic solar cell based on PBDB-T:PTB7-Th:FOIC blends is fabricated by blade-coating and exhibits a power conversion efficiency of 12.02%, which is one of the highest values for the printed organic solar cells in ambient environment. It is demonstrated that blade-coating can enhance crystallization of these three materials, but the degree of induction is different (FOIC > PBDB-T > PTB7-Th). Thus, the blade-coated PBDB-T:FOIC device presents much higher electron mobility than hole mobility due to the very high crystallinity of FOIC. Upon the addition of PTB7-Th into the blade-coated PBDB-T:FOIC blends, the crystallinity of FOIC decreases together with the corresponding electron mobility, due to the better miscibility between PTB7-Th and FOIC. The ternary strategy not only maintains the well-matched crystallinity and mobilities, but also increases the photocurrent with complementary light absorption as well as the Förster resonant energy transfer. Furthermore, small domains with homogeneously distributed nanofibers are observed in favor of the exciton dissociation and charge transport. This combination of blade-coating and ternary strategies exhibits excellent synergistic effect in optimizing morphology, showing great potential in the large-area fabrication of highly efficient organic solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201805041 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
As one of the main fragments in medical drugs, spirooxindole has received considerable attention from organic and medicinal chemists. In the past few decades, chemists have been searching for more straightforward and efficient methods to produce compounds containing a spirooxindole fragment. In this regard, isatin-derived Morita-Baylis-Hillman (MBH) carbonates have been widely used as versatile building blocks for the synthesis of spirooxindole structures.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
2D perovskite has demonstrated great potential for application in photovoltaic devices due to the tunable energy bands, suppressed ion migration, and high stability. However, 2D perovskite solar cells (PSCs) display suboptimal efficiency in comparison to 3D perovskite solar cells, which can be attributed to the quantum confinement and dielectric confinement effects resulting from the intercalation of organic spacer cations into the perovskite lattice. This review starts with the fundamental structural characteristics, optoelectronic properties, and carrier transport dynamics of 2D PSCs, followed by the discussion of approaches to improve the photovoltaic performance of 2D PSCs, including the manipulation of crystal orientation, phase distribution, pure phase, organic layer, and device engineering.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University of Technology, Institute for New Energy Materials and Low Carbon Technologies, 300384, Tianjin, CHINA.
Biphasic system not only presents a promising opportunity for complex catalytic processes, but also is a grand challenge in efficient tandem reactions. As an emerging solar-to-chemical conversion, the visible-light-driven and water-donating hydrogenation combines the sustainability of photocatalysis and economic-value of hydrogenation. However, the key and challenging point is to couple water-soluble photocatalytic hydrogen evolution reaction (HER) with oil-soluble hydrogenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!