Balancing Charge Storage and Mobility in an Oligo(Ether) Functionalized Dioxythiophene Copolymer for Organic- and Aqueous- Based Electrochemical Devices and Transistors.

Adv Mater

School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Published: December 2018

This work presents a soluble oligo(ether)-functionalized propylenedioxythiophene (ProDOT)-based copolymer as a versatile platform for a range of high-performance electrochemical devices, including organic electrochemical transistors (OECTs), electrochromic displays, and energy-storage devices. This polymer exhibits dual electroactivity in both aqueous and organic electrolyte systems, redox stability for thousands of redox cycles, and charge-storage capacity exceeding 80 F g . As an electrochrome, this material undergoes full colored-to-colorless optical transitions on rapid time scales (<2 s) and impressive electrochromic contrast (Δ%T > 70%). Incorporation of the polymer into OECTs yields accumulation-mode devices with an I current ratio of 10 , high transconductance without post-treatments, as well as competitive hole mobility and volumetric capacitance, making it an attractive candidate for biosensing applications. In addition to being the first ProDOT-based OECT active material reported to date, this is also the first reported OECT material synthesized via direct(hetero)arylation polymerization, which is a highly favorable polymerization method when compared to commonly used Stille cross-coupling. This work provides a demonstration of how a single ProDOT-based polymer, prepared using benign polymerization chemistry and functionalized with highly polar side chains, can be used to access a range of highly desirable properties and performance metrics relevant to electrochemical, optical, and bioelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201804647DOI Listing

Publication Analysis

Top Keywords

electrochemical devices
8
balancing charge
4
charge storage
4
storage mobility
4
mobility oligoether
4
oligoether functionalized
4
functionalized dioxythiophene
4
dioxythiophene copolymer
4
copolymer organic-
4
organic- aqueous-
4

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!