The Takelsa phreatic aquifer (Northeastern Tunisia) is an important source of fresh water for different economic sectors in the region that are strongly dependent on groundwater resources but, the aquifer is showing increasing signs of groundwater quality degradation like many other regions in the Mediterranean Basin. By integrating geochemical and multivariate statistical investigation methods, this research aims to identify the main geochemical processes and anthropogenic activities that are responsible for regional groundwater quality evolution, identifying the origins of salinity and nutrients, and their implications for groundwater use forcropirrigation and drinking water supply in order to improve aquifer management practices. The results show that groundwater facies vary from Ca-Mg-SO to Na-Cl water type and that mineralization is strongly controlled by mineral dissolution and cation exchange. The isotopic analyses indicate that groundwater is recharged by rainwater infiltration at higher altitudes and that a cumulative evaporative effect may contribute to local increase of salt content in groundwater. The Water Quality Index (WQI) used to determine the suitability of the Takelsa groundwater for drinking purposes reveals that just half of the groundwater points sampled show good to excellent quality for human consumption. The groundwater quality is also limited for irrigation purposes due to anthropogenic activities existing throughout the region. As groundwater in the studied region is crucial for irrigation and human supply, the identified groundwater quality problems and the identification of the main processes responsible for them should contribute to improve the infrastructure and managementpractices to allow the region to sustainable exploit the available groundwater resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-3473-1 | DOI Listing |
Environ Geochem Health
January 2025
Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA. Electronic address:
High concentrations of nitrate in groundwater pose risks to human and environmental health. This study evaluates the potential impact of climate change, land use, and fertilizer application rates on groundwater nitrate levels in the High Plains Aquifer under four Shared Socioeconomic Pathway (SSP) scenarios. A random forest model, with predictors such as fertilizer application rates, cropland coverage, and climate variables from six Coupled Model Intercomparison Project models, is used to project future nitrate concentrations.
View Article and Find Full Text PDFSci Data
January 2025
Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
Terrestrial geothermal springs, reminiscent of early Earth conditions, host diverse and abundant populations of Archaea. In this study, we reconstructed 2,949 metagenome-assembled genomes (MAGs) from 152 metagenomes collected over six years from 48 geothermal springs in Tengchong, China. Among these MAGs, 1,431 (49%) were classified as high-quality, while 1,518 (51%) were considered as medium-quality.
View Article and Find Full Text PDFWater Res
January 2025
National Center for Public Health and Pharmacy, Albert Flórián Street 2-6., H-1097, Budapest, Hungary. Electronic address:
Riverbank filtration is a cost-effective and efficient method for drinking water production, using the natural filtration capacity of the river gravelbed. Removal efficiency for organic micropollutants (OMP) in field studies is generally calculated by comparing the concentrations measured in surface water and in the wells either on the same day or with a shift of fixed time interval, neither of which can account for the variability of surface water quality and travel time in the aquifer. The present study proposes a novel method based on travel time distribution determined by a numerical transport model with a hypothesis that it will provide more reliable estimate for OMP removal.
View Article and Find Full Text PDFWater Res
January 2025
College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
Monitoring the quantity and quality of karst springs is essential for groundwater resource management. However, it is challenging to robustly forecast the karst spring discharge and pollutant concentration due to the high complexity and heterogeneity of karst aquifers. Few researchers have addressed the long-term prediction of hourly spring quantity and quality, which is crucial for emergency management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!