Purpose: Calcium carbonate was previously shown to interfere with L-thyroxine absorption. To estimate the magnitude of tablet L-thyroxine malabsorption caused by calcium carbonate, with resulting increase in serum thyrotropin (TSH), we performed a cohort study in a referral care center.

Methods: Fifty postmenopausal hypothyroid L-thyroxine-treated women (age 71.7 ± 5.1 years) who added calcium supplementation (600-1000 mg/day) were considered. They were taking L-thyroxine 45-60 min before breakfast (setting 1). After 4.4 ± 2.0 years from initiation of L-thyroxine therapy, they took calcium supplemaentation within 2 h after L-thyroxine taking (setting 2) for 2.3 ± 1.1 years. Hence, we recommended postponing calcium intake 6-8 h after L-thyroxine (setting 3). We evaluated TSH levels, the prevalence of women with elevated TSH (>4.12 mU/L), total cholesterolemia, fasting glycemia, blood pressure, and the prevalence of hypercholesterolemia, hyperglycemia, and hypertension.

Results: TSH levels were 3.33 ± 1.93 mU/L versus 1.93 ± 0.51 or 2.16 ± 0.54 comparing setting 2 with setting 1 or 3 (P < 0.001, both). In setting 2, 18% women had elevated TSH versus none in setting 1 or 3 (P < 0.01). Total cholesterolemia, fasting glycemia, systolic, and diastolic blood pressure were also significantly higher in setting 2 compared to settings 1 and 3. For every 1.0 mU/L increase within the TSH range of 0.85-6.9 mU/L, total cholesterolemia, glycemia, systolic, and diastolic blood pressure increased by 12.1, 3.12 mg/dL, 2.31, and 2.0 mmHg, respectively.

Conclusions: Monitoring of hypothyroid patients who ingest medications that decrease L-thyroxine absorption should not be restricted to solely measuring serum TSH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-018-1798-7DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
12
l-thyroxine malabsorption
8
blood pressure
8
total cholesterolemia
8
cholesterolemia fasting
8
fasting glycemia
8
l-thyroxine setting
8
tsh levels
8
l-thyroxine
7
calcium
6

Similar Publications

Compression and water retention behavior of saline soil improved by MICP combined with activated carbon.

Sci Rep

December 2024

Department of Civil and Smart Construction Engineering, Shantou University, Shantou, 515063, Guangdong, China.

Saline soil is widely distributed in China and poses significant challenges to engineering construction due to its harmful effects, such as salt heaving, dissolution collapse, and frost heaving. The Microbial-Induced Calcite Precipitation (MICP) method is an emerging environmental-friendly modification that can reduce or eliminate the environmental and engineering hazards of saline soil. To verify the feasibility of the MICP method for improving the properties of saline soil, laboratory tests were conducted to study the effects of salt content, activated carbon content and freeze-thaw cycles on the compression and water retention behavior of MICP modified saline soil.

View Article and Find Full Text PDF

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

The nacre formation process is a fascinating phenomenon involving mineral phase transformations, self-assembly processes, and protein-mineral interactions, resulting in a hierarchical structure that exhibits outstanding mechanical properties. However, this process is only partially known, and many aspects of nacre structure are not well understood, especially at the molecular scale. To understand the interplay between components-aragonite, protein and chitin-of the structure of nacre observed experimentally, we investigate the interactions of a peptide that is part of the protein lustrin A, identified in the nacreous layer of the shell of the abalone Haliotis rufescens, with the (001) crystal surface of aragonite and the chitin molecule.

View Article and Find Full Text PDF

Background: India has a high incidence of gallstones, which can cause chronic inflammation and increase the risk of gallbladder cancer. Understanding the age and composition of gallstones can provide insights into their formation and growth. This study used ¹⁴C dating, FTIR, and metagenome analysis to explore the natural history, deposition rate, and microbial/chemical composition of gallstones.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!