The calcium signalling and hedgehog (HH) signalling pathways operate in the primary cilium. Abnormalities in these pathways cause autosomal dominant polycystic kidney disease (ADPKD) and naevoid basal cell carcinoma syndrome (NBCCS) respectively. Several reports have proposed that hyperactivation of the HH pathway in animal models of polycystic kidney disease affects normal renal development and renal cyst phenotype. A family with 2 cases (a proband and her sister) of ADPKD and NBCCS coinheritance led us to investigate whether interactions may be present in the 2 pathways. The effect of HH pathway hyperactivation (due to c.573C>G mutation on PTCH1 gene that cause NBCCS) on renal ADPKD progression in the proband was compared to 18 age- and sex-matched ADPKD patients in a 9-year, prospective, follow-up study. Blood pressure, total kidney volume, estimated glomerular filtration rate, plasma copeptin, urine excretion of albumin, total protein and monocyte chemoattractant protein-1 (MCP-1) were analysed. Data for the sibling was not available. In the ADPKD group, blood pressure and estimated glomerular filtration rate were within normal values, and total kidney volume and MCP-1 increased (p < 0.01) throughout the study. In comparison, during the 9-year follow-up, the proband showed persistent hypertension (from 125/85 to 140/95 mm Hg), low total kidney volume (75 and 61% of median ADPKD), and a ninefold increase in urine MCP-1. We found no differences in urine excretion of albumin or plasma copeptin values. These results suggest that HH hyperactivation may play a minimal role in ADPKD progression. These observations can help to clarify the clinical impact of affected pathways in renal development and cystogenesis in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000490771DOI Listing

Publication Analysis

Top Keywords

polycystic kidney
12
kidney disease
12
total kidney
12
kidney volume
12
autosomal dominant
8
dominant polycystic
8
naevoid basal
8
basal cell
8
cell carcinoma
8
carcinoma syndrome
8

Similar Publications

Objective: To describe the treatment outcomes of patients who underwent Percutaneous Transluminal Angioplasty (PTA) for Central Vein Occlusive Disease (CVOD) in end-stage kidney disease and determine the association between patient profile and treatment outcomes.

Methods: A single-institution, retrospective review of patients aged 18 and above with end-stage kidney disease who underwent PTA for CVOD in the University of the Philippines - Philippine General Hospital (UP-PGH) from January 1, 2013, to December 31, 2022, was performed. These patients' demographic and clinical profiles were evaluated using means, frequencies, and percentages.

View Article and Find Full Text PDF

Mutations in coding sequence and abnormal PKD1 expression levels contribute to the development of autosomal-dominant polycystic kidney disease, the most common genetic disorder. Regulation of PKD1 expression by factors located in the promoter and 3´ UTR have been extensively studied. Less is known about its regulation by 5´ UTR elements.

View Article and Find Full Text PDF

Epigenetics in autosomal dominant polycystic kidney disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.

View Article and Find Full Text PDF

Objectives: Cardiovascular complications are well known in humans with autosomal dominant polycystic kidney disease (PKD), but limited data exist for cats. This study aimed to assess echocardiographic changes, cardiac troponin I (cTnI) levels and systolic blood pressure (SBP) in Persian cats with PKD to detect early cardiac abnormalities.

Methods: In total, 52 Persian and mixed-Persian cats were enrolled, with 26 cats in the control group and 26 diagnosed with PKD via ultrasound due to the unavailability of genetic testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!