Calixarenes and their derivatives have been widely used in chromatographic studies due to unique host-guest recognition properties. However, stationary phases in hydrophilic interaction chromatography associated with them have yet to be studied because of their general hydrophobicity. In this paper, a tetra-proline modified calix[4]arene bonded stationary phase (DTPCSP) was prepared and characterized by FT-IR spectra, elemental analysis, solid state C NMR, SEM, EDS and thermogravimetric analysis. The chromatographic performance and retention mechanism of the developed stationary phase were validated in hydrophilic interaction mode and compared with a commercial column using a variety of hydrophilic or hydrophobic compounds including phenols, nucleosides and sulfonamides. The developed stationary phase exhibited better selectivity than conventional calixarene phases, and the retention behaviors of phenols on DTPCSP column were elucidated by the calculation of quantum chemistry using ODS as contrast. All the results indicate that the developed DTPCSP stationary phase can be beneficial for simultaneously separating complex hydrophilic samples with high selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2018.09.083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!