Biological samples are inherently heterogeneous and complex. Tackling this complexity requires innovative technological and analytical solutions. Recent advances in high-throughput single-cell isolation and nucleic acid barcoding methods are rapidly changing the technological landscape of biological sciences and now make it possible to measure the (epi)genomic, transcriptomic, or proteomic state of individual cells. In addition, few experimental approaches enable multi-omics measurements of the same cell. However, merging-omics data collected from different experiments remains a considerable challenge. Although several strategies for merging transcriptomics datasets have recently been introduced, cell-to-cell variability and heterogeneity remains one of the confounding factors limiting data fusion and integration. Here, we focus our discussion on the latest single-cell technological and analytical solutions to achieve high data dimensionality and resolution. Obtaining datasets with a wealth of multi-omics information will undoubtedly provide new avenues for researchers to unravel the complexity of biological samples encountered in modern biological research and molecular diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2018.09.012 | DOI Listing |
Sci Rep
January 2025
Department of Orthopedic Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist, Linkou, Taoyuan, 33305, Taiwan.
Objective: To investigate the predictive ability of the MRI-based vertebral bone quality (VBQ) score for pedicle screw loosening following instrumented transforaminal lumbar interbody fusion (TLIF).
Methods: Data from patients who have received one or two-level instrumented TLIF from February 2014 to March 2015 were retrospectively collected. Pedicle screw loosening was diagnosed when the radiolucent zone around the screw exceeded 1 mm in plain radiographs.
Methods
January 2025
Department of Physiology, Ajou University School of Medicine, Suwon 16499 Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499 Republic of Korea. Electronic address:
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Synthetic inhibitors of carbohydrate-digesting enzymes are used to manage T2DM but may harm organ function over time. Bioactive peptides offer a safer alternative, avoiding such adverse effects.
View Article and Find Full Text PDFMed Image Anal
January 2025
Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK. Electronic address:
Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales.
View Article and Find Full Text PDFNeural Netw
January 2025
Medical Big Data Lab, Shenzhen Research Institute of Big Data, Shenzhen, 518172, China. Electronic address:
Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH.
View Article and Find Full Text PDFMol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!