A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of seed sludge on the selection of a photo-EBPR system. | LitMetric

The effect of seed sludge on the selection of a photo-EBPR system.

N Biotechnol

UCIBIO-REQUIMTE, Department of Chemistry Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

Published: March 2019

The phototrophic-enhanced biological phosphorus removal system (photo-EBPR) was recently proposed as an alternative photosynthetic process to conventional phosphorus removal. Previous work showed the possibility of obtaining a photo-EBPR system starting from a culture already enriched in polyphosphate accumulating organisms (PAOs). The present work evaluated whether the same could be achieved starting from conventional activated sludge. A sequencing batch reactor inoculated with sludge from a wastewater treatment plant (WWTP) was fed with a mixture of acetate and propionate (75%:25%) and subjected to dark/light cycles to select a photo-EBPR system containing PAOs and photosynthetic organisms, the oxygen providers for the system. The results showed that it is possible to obtain a photo-EBPR system starting from a WWTP sludge, although the process is slower than when started with a sludge already enriched in PAOs. After 15 days of operation, the system could remove 60 ± 2 mg-P/L of phosphorus (approximately 67% of the concentration at the end of dark period) in the light period, from which 13 ± 1 mg-P/L was removed during the phase without external air supply. These results indicate that a photo-EBPR system can be obtained independently of the seed sludge initially used, provided that a suitable operating strategy is implemented, i.e. by imposing conditions that favour the growth and coexistence of PAOs and photosynthetic microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2018.10.003DOI Listing

Publication Analysis

Top Keywords

photo-ebpr system
20
seed sludge
8
system
8
phosphorus removal
8
system photo-ebpr
8
system starting
8
paos photosynthetic
8
photo-ebpr
6
sludge
5
sludge selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!