Background Glioblastoma is a highly aggressive central nervous system neoplasm characterized by extensive infiltration of malignant cells into brain parenchyma, thus preventing complete tumor eradication. Cysteine cathepsins B, S, L and K are involved in cancer progression and are overexpressed in glioblastoma. We report here for the first time that cathepsin X mRNA and protein are also abundantly present in malignant glioma. Materials and methods Gene expression of cathepsins K and X was analyzed using publically-available tran-scriptomic datasets and correlated with glioma grade and glioblastoma subtype. Kaplan-Maier survival analysis was performed to evaluate the predictive value of cathepsin K and X mRNA expression. Cathepsin protein expression was localized and semi-quantified in tumor tissues by immunohistochemistry. Results Highest gene expression of cathepsins K and X was found in glioblastoma, in particular in the mesenchymal subtype. Overall, high mRNA expression of cathepsin X, but not that of cathepsin K, correlated with poor patients' survival. Cathepsin K and X proteins were abundantly and heterogeneously expressed in glioblastoma tissue. Immuno-labeling of cathepsins K and X was observed in areas of CD133-positive glioblastoma stem cells, localized around arterioles in their niches that also expressed SDF-1α and CD68. mRNA levels of both cathepsins K and X correlated with mRNA levels of markers of glioblastoma stem cells and their niches. Conclusions The presence of both cathepsins in glioblastoma stem cell niche regions indicates their possible role in regulation of glioblastoma stem cell homing in their niches. The clinical relevance of this data needs to be elaborated in further prospective studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287179 | PMC |
http://dx.doi.org/10.2478/raon-2018-0040 | DOI Listing |
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.
Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.
Sci Rep
January 2025
Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany.
Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.
View Article and Find Full Text PDFCancer Cell
December 2024
National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:
Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.
View Article and Find Full Text PDFCancer Cell
December 2024
Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA. Electronic address:
Plasma cells (PCs) are the main producers of antibodies and have context-dependent roles in tumor immunity. In this issue of Cancer Cell, Gao et al. report that intratumoral PCs drive maintenance of glioblastoma stem cells to promote tumor growth via IgG secretion that activates a FcγRIIA-SYK-AKT signaling axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!