Background: Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important pest of citrus worldwide because it transmits the bacteria causing huanglongbing (HLB). We investigated the effects and persistence of two soil application rates of thiamethoxam on ACP populations in two flushing seasons in the field. Thiamethoxam and clothianidin residues in the fruit were detected to evaluate food safety.

Results: Soil application of 50% thiamethoxam water-dispersible granules at concentrations of 4 and 10 g tree significantly decreased ACP populations, and there was a positive correlation between control efficacy and the persistence of thiamethoxam and clothianidin in leaves, providing longer-term protection for up to 90 days in the fall compared with 60 days in the spring. Higher thiamethoxam and clothianidin amounts were observed in new leaves than in old leaves. Thiamethoxam and clothianidin residues at a high rate in fruit were 0.012 and 0.010 mg kg at harvest, respectively, and neither insecticides was detectable at low rates.

Conclusions: These results demonstrate that soil-applied thiamethoxam plays a role in defending ACP, and provides an extended period of control efficacy. This knowledge could provide a reference for the control of ACP by soil application of thiamethoxam to reduce HLB spread. © 2018 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5248DOI Listing

Publication Analysis

Top Keywords

thiamethoxam clothianidin
16
soil application
12
thiamethoxam
9
soil-applied thiamethoxam
8
asian citrus
8
citrus psyllid
8
acp populations
8
clothianidin residues
8
control efficacy
8
acp
5

Similar Publications

There is growing interest in transcriptomic points of departure (tPOD) values from in vitro experiments as an alternative to animal test method. The study objective was to calculate tPODs in rainbow trout gill cells (RTgill-W1 following OECD 249) exposed to pesticides, and to evaluate how these values compare to fish acute and chronic toxicity data. Cells were exposed to one fungicide (chlorothalonil), ten herbicides (atrazine, glyphosate, imazethapyr, metolachlor, diquat, s-metolachlor, AMPA, dicamba, dimethenamid-P, metribuzin), eight insecticides (chlorpyrifos, diazinon, permethrin, carbaryl, clothianidin, imidacloprid, thiamethoxam, chlorantraniliprole), and OECD 249 positive control 3,4-dichloroaniline.

View Article and Find Full Text PDF

Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in from Hainan Province of China.

Foods

December 2024

Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou 571199, China.

In this study, residues of 10 neonicotinoid insecticides were tested with 143 fresh samples of using the QuEChERS method combined with UPLC-MS/MS. Based on the residue results, the point estimation method was used to assess dietary risks for adults and children, and the cumulative risk was assessed according to the hazard index () and relative potency factor () methods. The results showed that 71 out of 143 samples of fresh sold in Hainan tested positive for neonicotinoid insecticides, with a detection rate of 49.

View Article and Find Full Text PDF

Beeswax, an FDA-approved component, has been extensively applied in feed, pharmaceutical, and food industries. The occurrence of neonicotinoid pesticides in beehive systems and their residues in beeswax have caused safety risks. Therefore, establishing a detection method for neonicotinoid pesticide residues in beeswax is crucial for ensuring its quality.

View Article and Find Full Text PDF

Little is known about the potential impact of point source contamination from seed treatment pesticide residues and degradation products in waste products in treated seed. The presence of these pesticides and their degradation products in the environment has been associated with toxic effects on non-target organisms including bees, aquatic organisms and humans. In this study, we investigated the occurrence of twenty-two pesticide residues and their degradation products in two streams receiving runoff from land-applied wet cake, applied and spilled wastewater originating at a biofuels production facility using pesticide-treated seed as a feedstock.

View Article and Find Full Text PDF

Maternal neonicotinoid pesticide exposure impairs glucose metabolism by deteriorating brown fat thermogenesis.

Ecotoxicol Environ Saf

December 2024

Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China. Electronic address:

Background: Neonicotinoids (NEOs) are well-designed highly selective pesticides that target nicotinic acetylcholine receptors. However, their extensive use, accumulation, and biomagnification pose significant risks to humans. Increasing evidence has suggested that NEOs may affect glucose homeostasis, but little research has linked NEOs exposure to gestational diabetes mellitus (GDM), which is the most common disease in pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!