A continuous FeMo cofactor supply for nitrogenase maturation is ensured in Azotobacter vinelandii by developing a cage-like molybdenum storage protein (MoSto) capable to store ca. 120 molybdate molecules ( ) as discrete polyoxometalate (POM) clusters. To gain mechanistic insight into this process, MoSto was characterized by Mo and ATP/ADP content, structural, and kinetic analysis. We defined three functionally relevant states specified by the presence of both ATP/ADP and POM clusters (MoSto ), of only ATP/ADP (MoSto ) and of neither ATP/ADP nor POM clusters (MoSto ), respectively. POM clusters are only produced when ATP is hydrolyzed to ADP and phosphate. V was ca. 13 μmol ·min ·mg and K for molybdate and ATP/Mg in the low micromolar range. ATP hydrolysis presumably proceeds at subunit α, inferred from a highly occupied α-ATP/Mg and a weaker occupied β-ATP/no Mg -binding site found in the MoSto structure. Several findings indicate that POM cluster storage is separated into a rapid ATP hydrolysis-dependent molybdate transport across the protein cage wall and a slow molybdate assembly induced by combined auto-catalytic and protein-driven processes. The cage interior, the location of the POM cluster depot, is locked in all three states and thus not rapidly accessible for molybdate from the outside. Based on V , the entire Mo storage process should be completed in less than 10 s but requires, according to the molybdate content analysis, ca. 15 min. Long-time incubation of MoSto with nonphysiological high molybdate amounts implicates an equilibrium in and outside the cage and POM cluster self-formation without ATP hydrolysis. DATABASES: The crystal structures MoSto in the MoSto-F6, MoSto-F7, MoSto , MoSto , and MoSto-F1 states were deposited to PDB under the accession numbers PDB 6GU5, 6GUJ, 6GWB, 6GWV, and 6GX4.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14684DOI Listing

Publication Analysis

Top Keywords

pom clusters
16
pom cluster
12
mosto
10
molybdenum storage
8
storage protein
8
atp hydrolysis-dependent
8
molybdate
8
hydrolysis-dependent molybdate
8
atp/adp pom
8
clusters mosto
8

Similar Publications

Structural Isomerism of {Ag14}10+ Nanocluster Encapsulated by Bowl-like Polyoxometalates.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8th Liangxiang East Road, Room 829, Eco-Industrial Building, Beijing, 102488, Beijing, CHINA.

The structural isomerism of atomically precise nanoclusters provides a preeminent theoretical model to investigate the structure-property relationships. Herein, we synthesized three bowl-like polyoxometalate (POM)-encapsulated Ag nanoclusters (denoted as {Ag14(Sb3W30)2}-1, {Ag14(Sb3W30)2}-1a, and {Ag14(Sb3W30)2}-2) via a facile one-pot solvothermal approach. Among them, for the first time, an unprecedented isomeric {Ag14}10+ nanoclusters are obtained in polyoxoanions {Ag14(Sb3W30)2}-1 and {Ag14(Sb3W30)2}-2, which should be probably induced by the different distribution of coordinating O atoms in two isomeric bowl-like {Sb3W30} ligands.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Multinuclear Antimony-Bismuth-Lanthanide Cluster-Connected Polyoxometalate for the Detection of 5-Hydroxyindoleacetic Acid via Luminescence.

Inorg Chem

December 2024

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

The judicious selection and combination of multicomponents provide great potential for the further exploration of new polyoxometalate (POM) materials. Here, a delicate control on tungstate, Sb and Bi sources, Eu ions, and organic molecules led to the discovery of a novel multimetal cluster-embedded POM [HN(CH)]NaH{[Eu(HO)SbBiWO](SbWO)(SbWO)}·78HO (). The polyoxoanion of was constructed from four in situ-formed [SbWO] and [SbWO] building blocks connected by two hexa-metallic [Eu(HO)SbBiWO] clusters, to be a rare member of Sb- and Bi-coexisting POM.

View Article and Find Full Text PDF

High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China.

High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [PWO] precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [HPWO] {W} and a fully-closed [HPWO] {W}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W} and {W} as nodes, {Cu(HL)W} HNPOMOF-1 and {Cu(HL)W} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W} and {W}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date.

View Article and Find Full Text PDF

Enhanced Proton Conduction via Proton-Coupled Electron Transfer Reaction by a Keplerate-Type Polyoxometalate Capsule.

Inorg Chem

December 2024

Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.

Polyoxometalates (POMs), anionic metal-oxide clusters, are actively studied for their versatile structural designs and element selectivity. A series of Keplerate-type POMs with core-shell structures, known as POM capsules, that feature a Keggin-type POM core, has been reported. These POM capsules, with their neutral to negative charge and large molecular surface area, can serve as platforms for proton (H) conduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!