Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation.

Graefes Arch Clin Exp Ophthalmol

Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany.

Published: January 2019

Purpose: Intravitreal injection of the VEGF-binding protein aflibercept is widely used to treat various ocular diseases. In vitro, immortalized bovine retinal endothelial cells (iBREC) take up and transport aflibercept through the cell layer in a serum-dependent manner, likely mediated through the neonatal Fc receptor (FcRn), but degradation of the Fc domain-containing protein might be a competing intracellular process. Therefore, aflibercept's associations with proteins either involved in FcRn-mediated transport or in the lysosomal pathway were studied.

Methods: Confluent iBREC pre-cultivated with or without FBS were exposed for 4 h to in vivo achievable 250 μg/ml aflibercept, before cells were harvested for immunofluorescence staining or preparation of protein extracts. Intracellular localization of aflibercept and putative co-localizations with proteins involved in transport of IgG/FcRn complexes, i.e., endosomal Rab4 and Rab11, components of the cytoskeleton, motor proteins, or with marker proteins characteristic of multivesicular bodies or lysosomes were assessed by co-immunofluorescence stainings. Amounts of expressed endogenous proteins and of internalized aflibercept were determined by Western blot analyses.

Results: Aflibercept-specific perinuclear staining overlapped with that of the motor protein dynein whereas double staining with an anti-kinesin antibody resulted in a patchy pattern. In addition, aflibercept was typically present close to microtubules and often co-localized with α-tubulin. Rab4 and Rab11 stainings partly overlapped with the perinuclear staining of aflibercept whereas co-localization with Rab7 (in late endosomes/lysosomes) was only rarely seen. Interestingly, aflibercept but not the IgG bevacizumab broadly co-localized with the cation-independent mannose 6-phosphate receptor characteristic of multivesicular endosomes. In accordance with partial degradation beside transcytosis, the amount of intracellular aflibercept increased when cells were treated with protease inhibitors MG-132 or MG-101. Serum-deprived iBREC expressed less Rab11 and dynein but slightly more Rab4.

Conclusion: After uptake by iBREC, aflibercept is present in organelles associated with FcRn-mediated transport, but part of the protein is subject to degradation. Transport inhibition of aflibercept during cultivation without FBS is likely a consequence of an attenuated exocytosis due to decreased expression of Rab11.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323079PMC
http://dx.doi.org/10.1007/s00417-018-4166-7DOI Listing

Publication Analysis

Top Keywords

aflibercept
12
protein aflibercept
8
retinal endothelial
8
endothelial cells
8
proteins involved
8
fcrn-mediated transport
8
rab4 rab11
8
characteristic multivesicular
8
perinuclear staining
8
protein
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!