The present study addresses the synthesis and properties of polyhydroxyalkanoates (PHA) of different composition synthesized by Cupriavidus eutrophus B-10646 using glycerol as a carbon substrate. Poly(3-hydroxybutyrate) [P(3HB)] was effectively synthesized in fed-batch culture in a 30-L fermenter on glycerol of various purification degrees, with 99.5, 99.7, and 82.1% content of the main component. Purified glycerol (99.7%) was used for 150-L pilot scale fermentation. The total biomass and P(3HB) concentration reached 110 and 85.8 g/L, respectively, after 45 h of fed-batch fermentation. An average volumetric productivity of P(3HB) was 1.83 g/(L h). The degree of crystallinity and molecular weight of P(3HB) synthesized on glycerol were lower than and temperature characteristics were the same as those of P(3HB) synthesized on sugars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-018-9460-0 | DOI Listing |
Polymers (Basel)
September 2024
Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate), P3HB, with the use of aromatic linear polyurethane as modifier and organic nanoclay, Cloisite 30B, as a nanofiller were produced. The aromatic linear polyurethane (PU) was synthesized in a reaction of diphenylmethane 4,4'-diisocyanate and polyethylene glycol with a molecular mass of 1000 g/mole. The obtained nanobiocomposites were characterized by the small-angle X-ray scattering technique, scanning electron microscopy, Fourier infrared spectroscopy, thermogravimetry, and differential scanning calorimetry, and moreover, their selected mechanical properties, biodegradability, and cytotoxicity were tested.
View Article and Find Full Text PDFCurr Res Microb Sci
September 2024
Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda - 732 103, West Bengal, India.
To meet the need of the growing global population, the modern agriculture faces tremendous challenges to produce more food as well as fiber, timber, biofuels, etc.; hence generates more waste. This continuous growth of agricultural waste (agri-waste) and its management strategies have drawn the attention worldwide because of its severe environmental impacts including air, soil and water pollution.
View Article and Find Full Text PDFPolymers (Basel)
July 2024
Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand.
Poly(3-hydroxybutyrate) (P(3HB)) is an attractive biodegradable plastic alternative to petroleum-based plastic. However, the cost of microbial-based bioplastic production mainly lies in the cultivation medium. In this study, we screened the isolates capable of synthesizing P(3HB) using sugarcane bagasse (SCB) waste as a carbon source from 79 isolates that had previously shown P(3HB) production using a commercial medium.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany.
Poly-3-hydroxybutyrate (P3HB) is a biodegradable polyester produced mainly by bacterial fermentation in an isotactic configuration. Its high crystallinity (about 70%) and brittle behavior have limited the process window and the application of this polymer in different sectors. Atactic poly-3-hydroxybutyrate (a-P3HB) is an amorphous polymer that can be synthesized chemically and blended with the isotactic P3HB to reduce its crystallinity and improve its processability Ring-opening polymerization (ROP) is the most cited synthesis route for this polymer in the literature.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:
Polyhydroxyalkanoates (PHAs) are natural biopolyesters produced by microorganisms that represent one of the most promising candidates for the replacement of conventional plastics due to their complete biodegradability and advantageous material properties which can be modulated by varying their monomer composition. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has received particular research attention because it can be synthesized based on the same microbial platform developed for poly(3-hydroxybutyrate) [P(3HB)] without much modification, with as high productivity as P(3HB). It also offers more useful mechanical and thermal properties than P(3HB), which broaden its application as a biocompatible and biodegradable polyester.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!