The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the , , and genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217733PMC
http://dx.doi.org/10.1101/gad.319228.118DOI Listing

Publication Analysis

Top Keywords

clock repressors
8
clock
6
nf-κb
5
requirement nf-κb
4
nf-κb maintenance
4
maintenance molecular
4
molecular behavioral
4
circadian
4
behavioral circadian
4
circadian rhythms
4

Similar Publications

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups.

View Article and Find Full Text PDF

Alternative splicing of transcript mediates the response of circadian clocks to temperature changes.

Proc Natl Acad Sci U S A

December 2024

Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616.

Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In , seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of () and () genes that encode key transcriptional repressors of clock gene expression. Although () gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored.

View Article and Find Full Text PDF

Drosophila Cryptochrome (CRY) is an essential photoreceptor that mediates the resetting of the circadian clock by light. in vitro studies demonstrated a critical role of redox cycling of the FAD cofactor for CRY activation by light. However, it is unknown if CRY responds to cellular redox environment to modulate the circadian clock.

View Article and Find Full Text PDF

The nuclear transportation of CHRONO regulates the circadian rhythm.

J Biol Chem

December 2024

Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China. Electronic address:

The pace of the endogenous circadian clock is important for organisms to maintain homeostasis. CHRONO has been shown to be a core component of the mammalian clock and has recently been implicated to function in several important physiological aspects. To function properly, CHRONO needs to enter the nucleus to repress transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!