The main aim of this work is to develop a transparent bioactive cellulose acetate (CA) film for food packaging applications. The aim of the study is also to optimize the production methods for development of bulk and surface immobilized bioactive CA films. The vacuum drying method was optimized for the production of transparent CA films. The direct infusion and UV-assisted surface immobilization methods were investigated for the development of bioactive CA films. Reduction in the crystalline nature of CA was observed to be responsible for the production of transparent CA films. Thymol, with high antioxidant and antimicrobial properties, was examined to be the major active compound (>40%) present in the polar fraction of oregano. Retention of active compounds analyzed by High Performance Liquid Chromatography (HPLC), surface morphology analyzed by Atomic Force Microscopy (AFM), and surface chemistry analyzed by X-ray Photoelectron Spectroscopy (XPS) proved the efficiency of UV-assisted surface immobilization method. Acetyl cellulose films treated with UV irradiation at 312 nm were examined to have higher retention of active compounds. The bioactive CA films produced by bulk and surface immobilization methods showed >90% and ∼65% thymol retention, respectively. The UV-assisted surface immobilization method was found to decrease the mechanical and barrier properties of CA film. The bioactive CA films produced by bulk and surface immobilization methods were found to have retained the antioxidant and antimicrobial properties of the thymol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.10.018DOI Listing

Publication Analysis

Top Keywords

surface immobilization
20
bioactive films
16
bulk surface
12
uv-assisted surface
12
immobilization methods
12
films
8
surface
8
production transparent
8
transparent films
8
antioxidant antimicrobial
8

Similar Publications

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Enhancing the Bothropic Antivenom through a Reverse Antivenomics Approach.

J Proteome Res

January 2025

Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-901, Brazil.

Antivenoms are the only effective treatment for snakebite envenomation and have saved countless lives over more than a century. Despite their value, antivenoms present risks of adverse reactions. Current formulations contain a fraction of nonspecific antibodies and serum proteins.

View Article and Find Full Text PDF

Antibacterial and Anti-Inflammation Activity of Titanium Alloy by Efficient Copper Immobilization.

Langmuir

January 2025

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Titanium alloy plates are often used for fixation to bone. However, the plates often need to be removed due to infection and adverse inflammation. To avoid these problems, we immobilized copper, which has antibacterial effects and low cytotoxicity, on titanium plates by immersing the titanium in copper-tris(hydroxymethyl)aminomethane complex solutions.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Infectious diseases pose a growing challenge in healthcare, with the increasing rate of antimicrobial resistance limiting therapeutic options available for treatment. Rapid detection of infections at the earliest opportunity can significantly improve patient outcomes. In this report, ion current rectifying quartz nanopipettes with ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!