Regulatory T cells are central mediators of immune regulation and play an essential role in the maintenance of immune homeostasis in the steady state and under pathophysiological conditions. Disruption of CD8 Treg-dependent recognition of Qa-1-restricted self-antigens can result in dysregulated immune responses, tissue damage, autoimmune disease and cancer. Recent progress in studies on regulatory T cells of the CD8 lineage has provided new biological insight into this specialized regulatory T cell subpopulation. Identification of the Helios transcription factor as an essential control element for the differentiation and function of CD8 regulatory T cells has led to a better understanding of the unique genetic program of these cells. Recent analyses of T-cell receptor usage and antigen recognition by Qa-1-restricted CD8 Treg have provided additional insight into the unusual biological function of this regulatory CD8 lineage. Here we summarize recent advances in our understanding of CD8 regulatory T cells with emphasis on lineage commitment, differentiation and stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ai.2018.09.001 | DOI Listing |
Mol Biol Rep
January 2025
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.
Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.
J Clin Immunol
January 2025
Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.
View Article and Find Full Text PDFFASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!