Determination of PCB fluxes from Indiana Harbor and Ship Canal using dual-deployed air and water passive samplers.

Environ Pollut

Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA.

Published: January 2019

We have developed a method for measuring fluxes of PCBs from natural waters using air and water passive samplers deployed simultaneously in the Indiana Harbor and Ship Canal (IHSC). Net volatilization of ƩPCBs was determined for 2017, and ranged from 1.4 to 2.8 μg m d, with a median of 2.0 μg m d. We confirm earlier findings that the IHSC experiences constant release of gas-phase PCBs. Gas-phase and freely-dissolved water ƩPCB samples median were 4.0 ng m and 14 ng L, both exhibiting increasing concentrations over the year of study, and with a strong positive correlation between them (R = 0.93 for ƩPCBs). The relative concentrations of individual PCB congeners were very similar between air and water samples, and resemble Aroclor 1248, a mixture previously reported to contaminate the IHSC sediments. Monthly variability of the volatilization fluxes was primarily driven by the freely-dissolved water concentration changes (R = 0.87). Although different sampling methods were performed to estimate air-water fluxes between the month of August of 2006 and 2017, ƩPCB net fluxes have decreased by more than 60%, suggesting that either dredging at IHSC from 2012 to 2017 or reduction of upstream sources have decreased the freely-dissolved water concentrations of PCBs, thus reducing the air-water net volatilization in IHSC. Finally, we have shown that this passive sampling approach represents a simple and cost-effective method to assess the air-water exchange of PCBs, increase analytical sensitivity, enable measurements over time, and reduce uncertainties related to unexpected episodic events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277018PMC
http://dx.doi.org/10.1016/j.envpol.2018.10.048DOI Listing

Publication Analysis

Top Keywords

air water
12
freely-dissolved water
12
indiana harbor
8
harbor ship
8
ship canal
8
water passive
8
passive samplers
8
net volatilization
8
water
6
fluxes
5

Similar Publications

The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.

View Article and Find Full Text PDF

Boosting the oxygen reduction activity on metal surfaces by fine-tuning interfacial water with midinfrared stimulation.

Innovation (Camb)

January 2025

International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.

View Article and Find Full Text PDF

Ultra-stable and Sensitive X-ray Detectors Using 3D Hybrid Perovskitoid Single Crystals.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Organic-inorganic hybrid perovskites (OIHPs) have shown great potential for direct X-ray detection in security screening and medical diagnostics. However, their humidity stability is compromised due to the susceptibility of the structural components to water molecules, thereby limiting their practical application. In this work, stable and sensitive X-ray detection is achieved using high-quality bulk single crystals of the 3D perovskitoid (DMPZ)PbBr (DPB, DMPZ = N,N'-dimethyl-pyrazinium), wherein N-acid protons are replaced with hydrophobic alkyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!