In this work, CeO/rGO hybrids were successfully synthesized by a facile one-step hydrothermal method to reduce fire hazards of thermoplastic polyurethane. The structure, element components and morphology of the synthesized products were characterized by XRD, FTIR, Raman spectra and TEM. Then, 2.0 wt% CeO/rGO hybrids were incorporated into thermoplastic polyurethane matrix (TPU) to improve thermal stability, flame retardancy and smoke toxicity suppression. The introduction of CeO/rGO hybrids could remarkably suppress heat release and smoke release, indicated by the reduction of the peak heat release rate, smoke produce rate, as well as the release rate of CO and CO. The significant improvement in thermal stability and smoke suppression properties was mainly due to the synergistic function between physical barrier effect of rGO and catalytic effect of CeO. This work provided an effect way to enhance the thermal stability and fire safety of TPU.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.10.052DOI Listing

Publication Analysis

Top Keywords

thermoplastic polyurethane
12
ceo/rgo hybrids
12
thermal stability
12
fire hazards
8
hazards thermoplastic
8
heat release
8
release rate
8
influence cerium
4
cerium dioxide
4
dioxide functionalized
4

Similar Publications

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

Ultraelastic Lead Halide Perovskite Films via Direct Laser Patterning.

ACS Nano

January 2025

College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China.

The precise patterning of elastic semiconductors holds encouraging prospects for unlocking functionalities and broadening the scope of optoelectronic applications. Here, perovskite films with notable elasticity capable of stretching over 250% are successfully fabricated by using a continuous-wave (CW) laser-patterning technique. Under CW laser irradiation, perovskite nanoparticles (NPs) undergo meticulous crystallization within the thermoplastic polyurethane (TPU) matrix, which yields the capability of an unparalleled stretch behavior.

View Article and Find Full Text PDF

Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability.

View Article and Find Full Text PDF

Acting as the interface between the human body and its environment, clothing is indispensable in human thermoregulation and even survival under extreme environmental conditions. Development of clothing textiles with prolonged passive temperature-adaptive thermoregulation without external energy consumption is much needed for protection from thermal stress and energy saving, but very challenging. Here, a temperature-adaptive thermoregulation filament (TATF) consisting of thermoresponsive vacuum cavities formed by the temperature-responsive volume change of the material confined in the cellular cores of the filament is proposed.

View Article and Find Full Text PDF

Enhanced density separation efficiency of microplastics in presence of nonionic surfactants.

Environ Res

December 2024

College of Environmental Science and Engineering, Qingdao University, Qingdao, China. Electronic address:

Microplastics (MPs) recycling, a promising approach to tackle its pollution, faces significant challenges due to the lack of effective separation methods. Herein, the optimized density separation accompanied with nonionic surfactants was employed to purify single MPs species from mixed systems. By adjusting the flotation fluid density, the single MPs can be separated from their mixtures in equal proportions (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!