Assembly of histidine-rich protein materials controlled through divalent cations.

Acta Biomater

Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain. Electronic address:

Published: January 2019

Nanostructured protein materials show exciting biomedical applications, since both structure and function can be genetically programmed. In particular, self-assembling histidine-rich proteins benefit from functional plasticity that allows the generation of protein-only nanoparticles for cell targeted drug delivery. However, the rational development of constructs with improved functions is limited by a poor control of the oligomerization process. By exploring cross-interactions between histidine-tagged building blocks, we have identified a critical architectonic role of divalent cations. The obtained data instruct about how histidine-rich protein materials can be assembled, disassembled and reassembled within the nanoscale through the stoichiometric manipulation of divalent ions, in a biochemical approach to biomaterials design. STATEMENT OF SIGNIFICANCE: Divalent metal and non-metal cations such as Ni, Cu Ca and Zn have been identified as unexpected molecular tools to control the assembling, disassembling and reassembling of histidine-rich protein materials at the nanoscale. Their stoichiometric manipulation allows generating defined protein-protein cross-molecular contacts between building blocks, for a powerful nano-biochemical manipulation of the material's architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.10.030DOI Listing

Publication Analysis

Top Keywords

protein materials
16
histidine-rich protein
12
divalent cations
8
building blocks
8
nanoscale stoichiometric
8
stoichiometric manipulation
8
assembly histidine-rich
4
protein
4
materials
4
materials controlled
4

Similar Publications

Temporomandibular joint septic arthritis: a report of thirteen cases and a systematic review of the literature.

Rheumatol Int

January 2025

Department of Oral and Maxillofacial Surgery, U1008 - Advanced Drug Delivery Systems, Univ. Lille, CHU Lille, INSERM, Lille, F-59000, France.

Introduction: Temporomandibular joint (TMJ) septic arthritis is a rare frequently misdiagnosed condition with non-specific symptoms. We present our experience of thirteen cases of TMJ septic arthritis and perform a systematic review of the literature to collate the multiple characteristics of this condition.

Material And Method: A total of 133 cases of TMJ septic arthritis in humans across 62 studies were analyzed by searching PubMed, Cochrane Library, DOAJ and ClinicalTrials.

View Article and Find Full Text PDF

Modification of spore shells into probiotic carriers: selective loading and colonic delivery of and effective therapy of inflammatory bowel disease.

Food Funct

January 2025

Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.

Inflammatory bowel disease (IBD) is a chronic inflammation with a high incidence rate. Many probiotics, including (), have shown promise in IBD treatment. The therapeutic effects of most probiotics are greatly decided by the available live cells in the disease lesion, which is compromised as they pass through the gastric juice and intestinal tract, resulting in a loss of activity.

View Article and Find Full Text PDF

Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.

View Article and Find Full Text PDF

Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.

View Article and Find Full Text PDF

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!