Among the most derived calanoid copepod superfamily Clausocalanoidea about half of the genera belong to the so-called "Bradfordian" families that are defined by the presence of sensory setae at the maxilla and maxilliped. Many of these "Bradfordian" taxa are insufficiently well described, because their taxonomy is complicated and phylogenetic relationships are not completely resolved. We therefore aimed to unravel their phylogenetic relationships using molecular multi-gene analyses. We conducted molecular multi-gene analysis on 26 species from 15 genera representing all seven "Bradfordian" families using five gene fragments, the nuclear ribosomal 18S, 28S and internal transcribed spacer 2 DNA, and mitochondrial cytochrome c oxidase subunit I and cytochrome b. The monophyly of "Bradfordians" as one lineage in the superfamily Clausocalanoidea was supported by Maximum Likelihood and Bayesian Inference multi-gene analyses. Except for the support of species belonging to the same genus and specimens belonging to the same species, no phylogenetic relationships among genera and families were supported. The impossibility of resolving phylogenetic relationships among "Bradfordian" genera and families may be due to the young age or fast radiation of "Bradfordians" within the mostly derived calanoid superfamily Clausocalanoidea. Therefore, mutation rates might be not sufficient to track phylogenetic relationships. Evidence on phylogenetic relationships between genera and families remain unresolved after implementing integrated morphological and molecular taxonomic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2018.10.028 | DOI Listing |
Front Plant Sci
January 2025
Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.
View Article and Find Full Text PDFFront Plant Sci
January 2025
State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.
View Article and Find Full Text PDFMycobiology
January 2025
Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea.
During an investigation of fungi of the orders and in Korea, a new species, sp. nov., and three new records, , , and , were found in soil and freshwater samples.
View Article and Find Full Text PDFMycobiology
December 2024
Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea.
A survey of fungal diversity in soil and freshwater habitats in Korea isolated several species of the class . Morphological characteristics and multigene phylogenetic analyses showed that these species represented new records for Korea. Herein, we report the descriptions, illustrations, and molecular phylogeny of 19 species previously undescribed in Korea, including , , , , , , , , , , , , , , , , , , and
View Article and Find Full Text PDFActa Biochim Pol
January 2025
School of Food and Bioengineering, Chengdu University, Chengdu, China.
Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!