Understanding how neurons encode and compute information is fundamental to our study of the brain, but opportunities for hands-on experience with neurophysiological techniques on live neurons are scarce in science education. Here, we present Spikeling, an open source in silico implementation of a spiking neuron that costs £25 and mimics a wide range of neuronal behaviours for classroom education and public neuroscience outreach. Spikeling is based on an Arduino microcontroller running the computationally efficient Izhikevich model of a spiking neuron. The microcontroller is connected to input ports that simulate synaptic excitation or inhibition, to dials controlling current injection and noise levels, to a photodiode that makes Spikeling light sensitive, and to a light-emitting diode (LED) and speaker that allows spikes to be seen and heard. Output ports provide access to variables such as membrane potential for recording in experiments or digital signals that can be used to excite other connected Spikelings. These features allow for the intuitive exploration of the function of neurons and networks mimicking electrophysiological experiments. We also report our experience of using Spikeling as a teaching tool for undergraduate and graduate neuroscience education in Nigeria and the United Kingdom.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221365PMC
http://dx.doi.org/10.1371/journal.pbio.2006760DOI Listing

Publication Analysis

Top Keywords

spiking neuron
12
implementation spiking
8
spikeling
5
spikeling low-cost
4
low-cost hardware
4
hardware implementation
4
neuron neuroscience
4
neuroscience teaching
4
teaching outreach
4
outreach understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!