Smart windows with high near-infrared (NIR) light shielding and controllable visible light transmittance are highly sought after for cooling energy saving in buildings. Herein, we present a rationally designed spectrally selective smart window which is capable of shielding 96.2% of the NIR irradiation from 800 to 2500 nm and at the same time permitting acceptable visible light (78.2% before and 45.3% after its optical switching) for indoor daylighting. The smart window synergistically integrates the highly selective and effective NIR absorption based photothermal conversion of cesium tungsten bronze (Cs WO) with the transparent thermoresponsive poly( N-isopropyl acrylamide) (PNIPAM) microgel-polyacrylamide (PAM) hydrogel. Optical switching of the smart window is a direct result of the phase transition of PAM-PNIPAM hydrogel, which in turn is induced by the photothermal effect of Cs WO under sunlight irradiation. The smart window exhibits fast optical switching, shows long-term operational stability, and can be made highly flexible. Under the experimental conditions in this work, the indoor temperature with the smart window is ∼21 °C lower than that with a regular single-layered glass window under one sun irradiation. The smart window design in this work is meaningful for further development of effective smart windows for energy saving in the build environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b15574 | DOI Listing |
Poult Sci
January 2025
College of Mathematics Informatics, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Smart Agricultural Technology in Tropical South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangdong Engineering Research Center of Agricultural Big Data, Guangzhou 510642, China. Electronic address:
Accurate individual egg-laying detection is crucial for eliminating low-yielding breeder ducks and improving production efficiency. However, existing methods are often expensive and require strict environmental conditions. This study proposes a data processing method based on wearable sensors and joint time-frequency representation (TFR), aimed at accurately identifying egg-laying in ducks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China.
Sodium-metal batteries (SMBs) using solid-state polymer electrolytes (SPEs) show impressive superiority in energy density and safety. As promising candidates for SPEs, solid-state plastic crystal electrolytes (SPCE) based on succinonitrile (SN) plastic crystal could achieve high ion conductivity and wide voltage window. Nonetheless, the notorious SN decomposition reaction on the electrode/electrolyte interface seriously challenges the stable operation of the battery.
View Article and Find Full Text PDFACS Mater Au
January 2025
Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India.
Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.
View Article and Find Full Text PDFPsychiatry Clin Neurosci
January 2025
Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Aim: Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood.
View Article and Find Full Text PDFAdv Mater
January 2025
Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.
In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!