Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, the microRNA (miRNA) expression profiles of rats exposed to high altitude hypoxia and normal conditions were obtained from miRNA array analysis. Bioinformatics analyses, including the use of the Gene Oncology and Kyoto Encyclopedia of Genes and Genomes databases, were used to identify the genes and pathways, which were specifically associated with high altitude hypoxic environment‑associated miRNAs. A total of 26 miRNAs were differentially expressed in the two groups, comprising six upregulated and 20 downregulated miRNAs. In the present study, a novel pattern of upregulated miRNAs and their associated pathways were constructed, including proteoglycans in cancer, spliceosome, gluamatergic synapse, glycolysis/gluconeogenesis, Foxo, cGMP‑PKG and p53 signaling pathways, which may provide novel targets for diagnosing and understanding the mechanism of high altitude hypoxia‑induced disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236226 | PMC |
http://dx.doi.org/10.3892/mmr.2018.9570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!