Alzheimer's disease (AD) is a chronic neurodegenerative disease that often occurs at a slow pace yet deteriorates with time. MicroRNAs (miRs) have been demonstrated to offer novel therapeutic hope for disease treatment. The aim of the present study was to investigate the effect of miR‑98 on amyloid β (Aβ)‑protein production, oxidative stress and mitochondrial dysfunction through the Notch signaling pathway by targeting hairy and enhancer of split (Hes)‑related with YRPW motif protein 2 (HEY2) in mice with AD. A total of 70 Kunming mice were obtained and subjected to behavioral assessment. The levels of oxidative stress‑related proteins glutathione peroxidase, reduced glutathione, superoxide dismutase, malondialdehyde, acetylcholinesterase and Na+‑K+‑ATP were measured. Morphological changes in brain tissue, HEY2‑positivity levels, neuronal apoptotic index (AI) and neuron mitochondrial DNA (mtDNA) levels were also determined. Subsequently, the levels of miR‑98 and the mRNA and protein levels of HEY2, Jagged1, Notch1, Hes1, Hes5, β‑amyloid precursor protein, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein in tissues and hippocampal neurons were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. Finally, hippocampal neuron viability and apoptosis were determined using an MTT assay and flow cytometry, respectively. The levels of miR‑98‑targeted HEY2 and miR‑98 were low and the levels of HEY2 were high in the AD mice. The AD mice exhibited poorer learning and memory abilities, oxidative stress function, and morphological changes of pyramidal cells in the hippocampal CA1 region. Furthermore, the AD mice exhibited increased protein levels of HEY2 and AI in the CA1 region of brain tissues with reduced mtDNA levels and dysfunctional neuronal mitochondria. miR‑98 suppressed hippocampal neuron apoptosis and promoted hippocampal neuron viability by inactivating the Notch signaling pathway via the inhibition of HEY2. In conclusion, the results demonstrated that miR‑98 reduced the production of Aβ and improved oxidative stress and mitochondrial dysfunction through activation of the Notch signaling pathway by binding to HEY2 in AD mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6257854 | PMC |
http://dx.doi.org/10.3892/ijmm.2018.3957 | DOI Listing |
Int J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFNeurotox Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.
View Article and Find Full Text PDFArch Toxicol
January 2025
Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!