Long-term exposure to low-frequency vibration generated by vehicle driving impairs human lumbar spine health. However, few studies have investigated how low-frequency vibration affects human lumbar mechanical properties. This study established a poroelastic finite element model of human lumbar spinal segments L2-L3 to perform time-dependent vibrational simulation analysis and investigated the effects of different vibrational frequencies generated by normal vehicle driving on the lumbar mechanical properties in one hour. Analysis results showed that vibrational load caused more injury to lumbar health than static load, and vibration at the resonant frequency generated the most serious injury. The axial effective stress and the radial displacement in the intervertebral disc, as well as the fluid loss in the nucleus pulposus, increased, whereas the pore pressure in the nucleus pulposus decreased with increased vibrational frequency under the same vibrational time, which may aggravate the injury degree of human lumbar spine. Therefore, long-term driving on a well-paved road also induces negative effects on human lumbar spine health. When driving on a nonpaved road or operating engineering machinery under poor navigating condition, the auto seat transmits relatively high vibrational frequency, which is highly detrimental to the lumbar spine health of a driver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186348PMC
http://dx.doi.org/10.1155/2018/7962414DOI Listing

Publication Analysis

Top Keywords

human lumbar
24
lumbar spine
16
low-frequency vibration
12
vehicle driving
12
lumbar mechanical
12
mechanical properties
12
spine health
12
lumbar
9
finite element
8
vibration generated
8

Similar Publications

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

Correlations between spinopelvic parameters and health-related quality of life in degenerative lumbar scoliosis patients before and after long -level fusion surgery.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics, Peking University Third Hospital, No. 49. North Garden Street, Hai Dian District, Beijing, 100191, People's Republic of China.

Background: For degenerative lumbar scoliosis (DLS), prior studies mainly focused on the preoperative relationship between spinopelvic parameters and health-related quality of life (HRQoL), lacking an exhaustive evaluation of the postoperative situation. Therefore, the postoperative parameters most closely bonded with clinical outcomes has not yet been well-defined in DLS patients. The objective of this study was to comprehensively assess the correlation between radiographic parameters and HRQoL before and after surgery, and to identified the most valuable spinopelvic parameters for postoperative curative effect.

View Article and Find Full Text PDF

Unveiling the relation between swallowing muscle mass and skeletal muscle mass in head and neck cancer patients.

Eur Arch Otorhinolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO box 30.001, Groningen, 9700RB, The Netherlands.

Purpose: Sarcopenia, characterized by loss of skeletal muscle mass (SMM) and strength, often leads to dysphagia in the elderly. This condition can also worsen treatment outcomes in head and neck cancer (HNC) patients, who are susceptible to swallowing difficulties. This study aimed to establish the correlation between swallowing muscle mass (SwMM) and SMM in HNC patients.

View Article and Find Full Text PDF

Core blood biomarkers of Alzheimer's disease: A single-center real-world performance study.

J Prev Alzheimers Dis

February 2025

Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:

Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.

Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.

View Article and Find Full Text PDF

Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis.

Biomed Pharmacother

January 2025

Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:

There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!