Dilated Virchow-Robin (VR) spaces are usually not considered to be symptomatic. We present three cases presenting with atypical clinical features, which otherwise had clinical/imaging findings consistent with idiopathic Parkinson's disease. In all cases, an isolated large VR space in the basal ganglia contralateral to the side of symptom onset was observed. We propose that the atypical features could be associated with the mass effect of a significantly enlarged VR space, which would cause a dysfunction downstream from the presynaptic nigrostriatal dopaminergic system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183010PMC
http://dx.doi.org/10.1002/mdc3.12009DOI Listing

Publication Analysis

Top Keywords

virchow-robin spaces
8
isolated enlarged
4
enlarged virchow-robin
4
spaces influence
4
influence clinical
4
clinical manifestations
4
manifestations parkinson's
4
parkinson's disease?
4
disease? dilated
4
dilated virchow-robin
4

Similar Publications

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Inferior frontal sulcal hyperintensities (IFSH) observed on fluid-attenuated inversion recovery (FLAIR) MRI have been proposed as indicators of elevated cerebrospinal fluid waste accumulation in cerebral small vessel disease (CSVD). However, to validate IFSH as a reliable imaging biomarker, further replication studies are required. The objective of this study was to investigate associations between IFSH and CSVD, and their potential repercussions, i.

View Article and Find Full Text PDF

Objectives: To assess glymphatic function and white matter integrity in children with autism spectrum disorder (ASD) using multi-parametric MRI, combined with machine learning to evaluate ASD detection performance.

Materials And Methods: This retrospective study collected data from 110 children with ASD (80 exploratory, 43 validation) and 68 typically developing children (50 exploratory, 18 validation) from two centers. The automated diffusion tensor imaging along the perivascular space (aDTI-ALPS), fractional anisotropy (FA), cerebrospinal fluid volume, and perivascular space (PVS) volume indices were extracted from DTI, three-dimensional T1-weighted, and T2-weighted images.

View Article and Find Full Text PDF

From bench to bedside: US-Japan Collaborative Workshop on the NVU.

J Physiol Sci

January 2025

Department of Neurology, Keio University School of Medicine, Tokyo, Japan.

The joint workshop between U.S. and Japanese researchers, supported by The U.

View Article and Find Full Text PDF

Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).

Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!