Various Ca2+-antagonists and related compounds were probed for possible anti-calmodulin properties. Some of them efficiently inhibit calmodulin dependent activity (the plasma membrane Ca2+-ATPase and the cyclic nucleotide phosphodiesterase). The I50-values for the most potent inhibitors varied between 15 and 30 uM. Using fluorescence spectroscopy and flow dialysis methods the stoichiometry of the binding of some of the drugs to calmodulin has been investigated. The number of Ca2+-dependent high affinity binding sites has been studied on trypsin fragments of calmodulin. Compound 12-114 was bound with high affinity in a Ca2+-dependent way to both halves of calmodulin, compound 200-737 recognized one high affinity binding site only in the C-terminal half of the molecule, whereas compound 36-079 demanded the intact protein to be able to interact with high affinity in a Ca2+-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0143-4160(87)90050-9DOI Listing

Publication Analysis

Top Keywords

high affinity
16
flow dialysis
8
affinity binding
8
calmodulin compound
8
affinity ca2+-dependent
8
calmodulin-drug interaction
4
interaction fluorescence
4
fluorescence flow
4
dialysis study
4
study ca2+-antagonists
4

Similar Publications

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.

View Article and Find Full Text PDF

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (, over 10 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Scoring Conformational Metastability of Macrocyclic Peptides with Binding Pose Metadynamics.

J Chem Inf Model

January 2025

Department of Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

Potency optimization of macrocyclic peptides can include both modifying intermolecular interactions and modifying the conformational stability of the bioactive conformation. However, the number of possible modifications is vast. To identify modifications that enhance the stability of the binding conformations in a cost-effective manner, there is a need for a high-throughput in-silico method that scores the conformational stability of these modified molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!