A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of Telechelic Polymers.

J Chem Theory Comput

Physical Chemistry and Soft Matter , Wageningen University & Research, Stippeneng 4 , 6708 WE , Wageningen , The Netherlands.

Published: December 2018

We developed a hybrid Monte Carlo self-consistent field technique to model physical gels composed of ABA triblock copolymers and gain insight into the structure and interactions in such gels. The associative A blocks of the polymers are confined to small volumes called nodes, while the B block can move freely as long as it is connected to the A blocks. A Monte Carlo algorithm is used to sample the node configurations on a lattice, and Scheutjens-Fleer self-consistent field (SF-SCF) equations are used to determine the change in free energy. The advantage of this approach over more coarse grained methods is that we do not need to predefine an interaction potential between the nodes. Using this MC-SCF hybrid simulation, we determined the radial distribution functions of the nodes and structure factors and osmotic compressibilities of the gels. For a high number of polymers per node and a solvent-B Flory-Huggins interaction parameter of 0.5, phase separation is predicted. Because of limitations in the simulation volume, we did however not establish the full phase diagram. For comparison, we performed some coarse-grained MC simulations in which the nodes are modeled as single particles with pair potentials extracted from SF-SCF calculations. At intermediate concentrations, these simulations gave qualitatively similar results as the MC-SCF hybrid. However, at relatively low and high polymer volume fractions, the structure of the coarse-grained gels is significantly different because higher-order interactions between the nodes are not accounted for. Finally, we compare the predictions of the MC-SCF simulations with experimental and modeling data on telechelic polymer networks from literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328284PMC
http://dx.doi.org/10.1021/acs.jctc.7b01264DOI Listing

Publication Analysis

Top Keywords

monte carlo
12
self-consistent field
12
hybrid monte
8
carlo self-consistent
8
model physical
8
physical gels
8
mc-scf hybrid
8
gels
5
nodes
5
hybrid
4

Similar Publications

Ascertaining the Environmental Advantages of Pavement Designs Incorporating Recycled Content through a Parametric and Probabilistic Approach.

Environ Sci Technol

January 2025

College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.

Reclaimed asphalt pavement (RAP) is a widely used end-of-life (EoL) material in asphalt pavements to increase the material circularity. However, the performance loss due to using RAP in the asphalt binder layer often requires a thicker layer, leading to additional material usage, energy consumption, and transportation effort. In this study, we developed a parametric and probabilistic life cycle assessment (LCA) framework to robustly compare various pavement designs incorporating recycled materials.

View Article and Find Full Text PDF

The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (CO), which is one of the three components used to establish the clinical breakpoint.

View Article and Find Full Text PDF

Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated microbiome studies. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility.

View Article and Find Full Text PDF

Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.

View Article and Find Full Text PDF

Efficient stochastic simulation of piecewise-deterministic Markov processes and its application to the Morris-Lecar model of neural dynamics.

Biol Cybern

January 2025

Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Piecewise-deterministic Markov processes combine continuous in time dynamics with jump events, the rates of which generally depend on the continuous variables and thus are not constants. This leads to a problem in a Monte-Carlo simulation of such a system, where, at each step, one must find the time instant of the next event. The latter is determined by an integral equation and usually is rather slow in numerical implementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!