Di-(2-ethylhexyl)phthalate (DEHP), a distinctive endocrine-disrupting chemical, is widely used as a plasticizer in a variety of consumer products. It can easily cross the placenta and enter breast milk and then it is rapidly absorbed by offspring. Since it is generally accepted that individuals are more sensitive to chemical exposure during vital developmental periods, we investigated whether DEHP exposure during lactation affects cardiac insulin signaling and glucose homeostasis in the F male rat offspring at postnatal day 22 (PND22). Lactating Wistar rats were administered with DEHP (1, 10, and 100 mg/kg/d) or olive oil from lactation day 1 to 21 by oral gavage. All the male pups were perfused and killed on PND22. On the day before the killing, they were kept for fasting overnight and blood was collected. The cardiac muscle was dissected out, washed in ice-cold physiological saline repeatedly and used for the assay of various parameters. DEHP-exposed offspring had significantly lower body weight than the control. DEHP-exposed offspring showed elevated blood glucose, decreased C-2-deoxyglucose uptake and C-glucose oxidation in cardiac muscle at PND22. The concentration of upstream insulin signaling molecules such as insulin receptor subunit β (InsRβ) and insulin receptor substrate 1 (IRS1) were downregulated in DEHP-exposed offspring. However, no significant alterations were observed in protein kinase B (Akt) and Akt substrate of 160 kDa (AS160). Surprisingly, phosphorylation of IRS1 and Akt were diminished. Low levels of glucose transporter type 4 (GLUT4) protein and increased GLUT4 phosphorylation which decreases its intrinsic activity and translocation towards plasma membrane were also recorded. Lactational DEHP exposure predisposes F male offspring to cardiac glucometabolic disorders at PND22, which may impair cardiac function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27866 | DOI Listing |
The lung tumor microenvironment is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic, and immunosuppressive microenvironment that can augment the resistance of lung tumors to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3), and nuclear factor of κB (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China.
Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.
View Article and Find Full Text PDFArq Neuropsiquiatr
January 2025
Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China. Electronic address:
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China. Electronic address:
Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.
Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!