Effects of 1-methylcyclopropene on surface wax and related gene expression in cold-stored 'Hongxiangsu' pears.

J Sci Food Agric

Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.

Published: March 2019

Background: Surface wax protects fruit from dehydration and pathogen erosion during storage. The surface wax of pears changes greatly during storage. In this work, the effect of ethylene action inhibitor 1-methylcyclopropene on wax accumulation and related gene expression in 'Hongxiangsu' pears during cold storage was investigated.

Results: The alkanes, alkenes, fatty acids, esters, aldehydes and triterpenoids on the fruit surface accumulated and peaked at day 180, but fatty alcohols decreased before day 90 and then increased in the control. Treatment with 1-MCP (1.0 µL L ) reduced surface wax at day 180 of storage. Compared with the control, the wax crystals became smaller in 1-MCP-treated fruit on days 90 and 270. The 1-MCP decreased the expression levels of ethylene synthesis, perception and signal genes ACS1, ACO1, ERS1, ETR2, ERF1 and wax-related genes (LACS1, LACS2, KCS2, KCS9, KCS20, FDH, CER6, CER10, LTPG1, LTP3, LTP4, ABCG11 and ABCG12).

Conclusion: These results suggested that 1-MCP suppressed ethylene synthesis and signal-pathway and wax-related gene expression; it also reduced the wax and the size of crystals on the fruit surface in cold-stored 'Hongxiangsu' pears. © 2018 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.9452DOI Listing

Publication Analysis

Top Keywords

surface wax
16
gene expression
12
'hongxiangsu' pears
12
cold-stored 'hongxiangsu'
8
fruit surface
8
day 180
8
ethylene synthesis
8
wax
7
surface
6
effects 1-methylcyclopropene
4

Similar Publications

Polysiloxane-Modified PMMA-Shell Phase Change Microcapsules for Thermal Management Fabrics.

Macromol Rapid Commun

January 2025

College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China.

Critical issues such as leakage, degradation, and thermal response hysteresis have become the focus in the application of phase change materials (PCMs) in area such as thermal management of fabrics. The encapsulation of PCMs prepared as microcapsules using polysiloxanes, etc. as a component unit of crosslinking agents represents a highly promising avenue of research.

View Article and Find Full Text PDF

Gerbera () is a popular cut flower on the market, so extending its vase life (VL) is an important goal in the horticultural industry. The aim of this study was to improve the freshness of gerbera cut flowers through the optimal solution (OS) and to analyze its preservation mechanism. We used chitosan (COS), calcium chloride (CaCl), and citric acid (CA) as the main ingredients of the vase solution and determined the OS ratio of 104 mg/L of COS, 92 mg/L of CA, and 93 mg/L of CaCl using the Box-Behnken design-response surface method (BBD-RSM).

View Article and Find Full Text PDF

The current project was designed to develop piperine-loaded solid lipid microparticles (SLMs) to assess the anti-arthritic potential of piperine (PIP). Variable proportions of carnauba wax, beeswax, and tween 80 were employed for preparing SLMs by using the solvent evaporation technique. The developed formulations were subjected to particle size measurements, entrapment efficiency (EE), and zeta potential (ZP) determination.

View Article and Find Full Text PDF

Dietary fibers (DF) from plant-based foods promote health benefits through their physicochemical properties and fermentation by the gut microbiota, often studied in relation to changes in gut microbiota profile and production of gut microbiota-derived metabolites. Here, we characterized structural motifs (i.e.

View Article and Find Full Text PDF

An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!