Most of the molecular diagnostic protocols used for phytoplasmas detection are based on the purification of total nucleic acids and on the use of genomic DNA of the pathogen as the target of amplification. Here we describe a diagnostic approach that, avoiding the purification of nucleic acids and exploiting the amplification of the abundant phytoplasma ribosomal RNA molecules produced during the infectious process, allows reducing the time and the costs necessary for the analysis, without affecting sensitivity and specificity. This is useful in particular when high numbers of analyses are required, as in certification programs, to monitor phytoplasmas classified as quarantine or quality pathogens. The protocol here described can be used for the detection and quantification of Candidatus Phytoplasma mali, Ca. P. pyri, Ca. P. prunorum, Ca. P. vitis, and Ca. P. solani by qPCR, RT-qPCR, ddPCR, and ddRT-PCR techniques based on TaqMan chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8837-2_13DOI Listing

Publication Analysis

Top Keywords

detection quantification
8
nucleic acids
8
rapid protocol
4
protocol crude
4
crude rna/dna
4
rna/dna extraction
4
extraction rt-qpcr
4
rt-qpcr detection
4
quantification molecular
4
molecular diagnostic
4

Similar Publications

Accurate identification and quantification of 5-hydroxymethylcytosine (5hmC) can help elucidate its function in gene expression and disease pathogenesis. Current 5hmC analysis methods still present challenges, especially for clinical applications, such as having a risk of false-positive results and a lack of sufficient sensitivity. Herein, a 5hmC quantification method for fragment-specific DNA sequences with extreme specificity, high sensitivity, and clinical applicability was established using a quantitative real-time PCR (qPCR)-based workflow through the combination of enzymatic digestion and biological deamination strategy (EDD-5hmC assay).

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

: Accurate tumor detection and quantification are important for optimized therapy planning and evaluation. Total tumor burden is also an appealing biomarker for clinical trials. Manual examination and annotation of oncologic PET/CT is labor-intensive and demands a high level of expertise.

View Article and Find Full Text PDF

HBx Facilitates Drug Resistance in Hepatocellular Carcinoma via CD133-regulated Self-renewal of Liver Cancer Stem Cells.

J Clin Transl Hepatol

January 2025

Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Background And Aims: Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!