A framework for constraining image SNR loss due to MR raw data compression.

MAGMA

Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Rm B1D47, 10 Center Dr, Bethesda, MD, 20814, USA.

Published: April 2019

Introduction: Computationally intensive image reconstruction algorithms can be used online during MRI exams by streaming data to remote high-performance computers. However, data acquisition rates often exceed the bandwidth of the available network resources creating a bottleneck. Data compression is, therefore, desired to ensure fast data transmission.

Methods: The added noise variance due to compression was determined through statistical analysis for two compression libraries (one custom and one generic) that were implemented in this framework. Limiting the compression error variance relative to the measured thermal noise allowed for image signal-to-noise ratio loss to be explicitly constrained.

Results: Achievable compression ratios are dependent on image SNR, user-defined SNR loss tolerance, and acquisition type. However, a 1% reduction in SNR yields approximately four to ninefold compression ratios across MRI acquisition strategies. For free-breathing cine data reconstructed in the cloud, the streaming bandwidth was reduced from 37 to 6.1 MB/s, alleviating the network transmission bottleneck.

Conclusion: Our framework enabled data compression for online reconstructions and allowed SNR loss to be constrained based on a user-defined SNR tolerance. This practical tool will enable real-time data streaming and greater than fourfold faster cloud upload times.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351621PMC
http://dx.doi.org/10.1007/s10334-018-0709-5DOI Listing

Publication Analysis

Top Keywords

snr loss
12
data compression
12
image snr
8
data
8
compression
8
compression ratios
8
user-defined snr
8
snr
6
framework constraining
4
image
4

Similar Publications

Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.

View Article and Find Full Text PDF

The primary concern among adults with regard to their hearing is the difficulty in comprehending speech, particularly in noisy environments. The constant need to listen attentively leads to heightened frustration, fatigue and decreased concentration. According to research, high-frequency hearing loss could have negative implications on speech perception and make it even harder to communicate.

View Article and Find Full Text PDF

Efficacy of Hearing Aids in Patients with Hearing Difficulties in Noise: Focus on Hidden Hearing Loss.

J Clin Med

January 2025

Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Oto-Rhino-Laryngologie, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France.

Hearing aids (HAs) have been used for standard high-frequency hearing loss and tinnitus, but their effects on speech intelligibility in noise (SIN) in people with normal hearing, including hidden hearing loss (HHL), have been little explored. We included in a prospective cohort study patients who experience poor SIN and have normal pure tone average in quiet conditions or slight HL. We used open-fit HAs.

View Article and Find Full Text PDF

Research on Dry Coupling Technology in the Ultrasonic Non-Destructive Testing of Concrete.

Micromachines (Basel)

January 2025

College of Mechanical & Electrical Engineering, Central South University, Changsha 410083, China.

In the health monitoring and safety assessments of concrete structures, ultrasonic non-destructive testing (NDT) technology has become an indispensable tool due to its non-destructive nature, efficiency, and precision. However, when used in inspecting irregular concrete surfaces, traditional planar ultrasonic transducers often encounter energy loss and signal attenuation induced by poor interface coupling, which significantly reduces the accuracy and reliability of the test results. To address this problem, this article proposes a point-contact dry coupling ultrasonic transducer solution, which enables efficient acquisition of ultrasonic signals within concrete without the need for couplants.

View Article and Find Full Text PDF

Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between image quality and radiation exposure is critical, as reducing the administered dose results in a lower signal-to-noise ratio (SNR) and information loss, which may significantly affect clinical diagnosis. Deep learning (DL) algorithms have recently made significant progress in low-dose (LD) PET reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!