A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Content-Based Image Retrieval System for Pulmonary Nodules Using Optimal Feature Sets and Class Membership-Based Retrieval. | LitMetric

Lung cancer manifests itself in the form of lung nodules, the diagnosis of which is essential to plan the treatment. Automated retrieval of nodule cases will assist the budding radiologists in self-learning and differential diagnosis. This paper presents a content-based image retrieval (CBIR) system for lung nodules using optimal feature sets and learning to enhance the performance of retrieval. The classifiers with more features suffer from the curse of dimensionality. Like classification schemes, we found that the optimal feature set selected using the minimal-redundancy-maximal-relevance (mRMR) feature selection technique improves the precision performance of simple distance-based retrieval (SDR). The performance of the classifier is always superior to SDR, which leans researchers towards conventional classifier-based retrieval (CCBR). While CCBR improves the average precision and provides 100% precision for correct classification, it fails for misclassification leading to zero retrieval precision. The class membership-based retrieval (CMR) is found to bridge this gap for texture-based retrieval. Here, CMR is proposed for nodule retrieval using shape-, margin-, and texture-based features. It is found again that optimal feature set is important for the classifier used in CMR as well as for the feature set used for retrieval, which may lead to different feature sets. The proposed system is evaluated using two independent databases from two continents: a public database LIDC/IDRI and a private database PGIMER-IITKGP, using three distance metrics, i.e., Canberra, City block, and Euclidean. The proposed CMR-based retrieval system with optimal feature sets performs better than CCBR and SDR with optimal features in terms of average precision. Apart from average precision and standard deviation of precision, the fraction of queries with zero precision retrieval is also measured.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499853PMC
http://dx.doi.org/10.1007/s10278-018-0136-1DOI Listing

Publication Analysis

Top Keywords

optimal feature
20
feature sets
16
retrieval
14
feature set
12
average precision
12
content-based image
8
image retrieval
8
retrieval system
8
nodules optimal
8
feature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!