AI Article Synopsis

Article Abstract

Cognitive impairment is a core feature of schizophrenia, which is predictive for functional outcomes and is, therefore, a treatment target in itself. Yet, literature on efficacy of different pharmaco-therapeutic options is inconsistent. This quantitative review provides an overview of studies that investigated potential cognitive enhancers in schizophrenia. We included pharmacological agents, which target different neurotransmitter systems and evaluated their efficacy on overall cognitive functioning and seven separate cognitive domains. In total, 93 studies with 5630 patients were included. Cognitive enhancers, when combined across all different neurotransmitter systems, which act on a large number of different mechanisms, showed a significant (yet small) positive effect size of 0.10 (k = 51, p = 0.023; 95% CI = 0.01 to 0.18) on overall cognition. Cognitive enhancers were not superior to placebo for separate cognitive domains. When analyzing each neurotransmitter system separately, agents acting predominantly on the glutamatergic system showed a small significant effect on overall cognition (k = 29, Hedges' g = 0.19, p = 0.01), as well as on working memory (k = 20, Hedges' g = 0.13, p = 0.04). A sub-analysis of cholinesterase inhibitors (ChEI) showed a small effect on working memory (k = 6, Hedges' g = 0.26, p = 0.03). Other sub-analyses were positively nonsignificant, which may partly be due to the low number of studies we could include per neurotransmitter system. Overall, this meta-analysis showed few favorable effects of cognitive enhancers for patients with schizophrenia, partly due to lack of power. There is a lack of studies involving agents acting on other than glutamatergic and cholinergic systems, especially of those targeting the dopaminergic system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202388PMC
http://dx.doi.org/10.1038/s41537-018-0064-6DOI Listing

Publication Analysis

Top Keywords

cognitive enhancers
20
cognitive
9
enhancers patients
8
patients schizophrenia
8
neurotransmitter systems
8
separate cognitive
8
cognitive domains
8
neurotransmitter system
8
agents acting
8
acting glutamatergic
8

Similar Publications

Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.

View Article and Find Full Text PDF

In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).

View Article and Find Full Text PDF

Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.

Tomography

January 2025

NextGen Precision Health, Department of Radiology, University of Missouri Columbia, 1030 Hitt Street, Columbia, MO 65201, USA.

: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. : Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding.

View Article and Find Full Text PDF

Sustainable extraction of phytoestrogens from soybean and okara using green solvents.

Food Res Int

February 2025

Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil. Electronic address:

Soy extract waste, okara, is a rich source of bioactive compounds such as isoflavones, which are phytoestrogens with potential health benefits. To develop a green approach to recovering these compounds and valorizing okara, a study was developed to screen variables for the extraction of isoflavones from okara and soybean (for comparison) using Deep Eutectic Solvents (DES) composed with choline chloride ([Ch]Cl) and acetic acid (AA) ([Ch]Cl: AA, 1:2). A fractional design (2) was used to evaluate variables in the extraction of isoflavones, followed by a Central Composite Rotatable Design (CCRD).

View Article and Find Full Text PDF

The mitochondrial choline transporter, SLC25A48, regulates urine and blood choline levels in humans.

Kidney Int

February 2025

Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA; Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA. Electronic address:

Choline is an essential nutrient for the biosynthesis of phospholipids and neurotransmitters and controls several physiological functions in mammals. It is metabolized in the organelles within cells, including mitochondria. However, its subcellular distribution and mode of mitochondrial transport remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!