Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipid droplets (LDs) are intracellular organelles and a central site for lipid synthesis, storage, and mobilization. The size of LDs reflects the dynamic regulation of lipid metabolism in cells. Previously, we found that cell death-inducing DFFA-like effector C (CIDEC) mediates LD fusion and growth by lipid transfer through LD-LD contact sites in adipocytes and hepatocytes. The CIDE-N domains of CIDEC molecules form homodimers, whereas the CIDE-C domain plays an important role in LD targeting and enrichment. Here, using targeted protein deletions and GFP expression coupled with fluorescence microscopy, we identified a polybasic RKKR motif in the linker region that connects the CIDE-N and CIDE-C domains of CIDEC and functions as a regulatory motif for LD fusion. We found that deletion of the linker region or mutation of the RKKR motif increases the formation of supersized LDs compared with LD formation in cells with WT CIDEC. This enhanced LD fusion activity required the interaction between CIDE-N domains. Mechanistically, we found that the RKKR motif interacts with acidic phospholipids via electrostatic attraction. Loss of this motif disrupted the protein-lipid interaction, resulting in enhanced lipid droplet fusion activity and thus formation of larger LDs. In summary, we have uncovered a CIDEC domain that regulates LD fusion activity, a finding that provides insights into the inhibitory regulation of LD fusion through CIDEC-lipid interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302180 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.004892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!