Hypoxia-ischemia alters distribution of lysosomal proteins in rat cortex and hippocampus.

Biol Open

Laboratorio de Biología y Fisiología Celular "Dr. Franciso Bertini", Instituto de Histología y Embriología - IHEM-CONICET-FCM-UNCuyo, 5500 Mendoza, Argentina

Published: October 2018

Neuronal excitotoxicity induced by glutamatergic receptor overstimulation contributes to brain damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death. In this study we evaluated the effect of neonatal hypoxia-ischemia (HI), as a model of excitotoxicity, on the lysosomal integrity throughout the distribution of the lysosomal proteins cathepsin D and prosaposin. Rat pups (7 days old) of the Wistar Kyoto strain were submitted to HI and they were euthanized 4 days after treatment and the cerebral cortex (Cx) and hippocampus (HIP) were processed for immunohistochemistry or immunoblotting. Treatment induced an increase of gliosis and also a redistribution of both prosaposin and cathepsin D (as intermediate and mature forms), into the cytosol of the HIP and Cx. In addition, HI induced a decrease of LAMP-1 in the membranous fraction and the appearance of a reactive band to anti-LAMP-1 in the cytosolic fraction, suggesting a cleavage of this protein. From these results, we propose that the abnormal release of Cat D and PSAP to the cytosol is triggered as a result of LAMP-1 cleavage in HI animals, which leads to cell damage. This could be a common mechanism in pathological conditions that compromises neuronal survival and brain function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215404PMC
http://dx.doi.org/10.1242/bio.036723DOI Listing

Publication Analysis

Top Keywords

distribution lysosomal
8
lysosomal proteins
8
cortex hippocampus
8
hypoxia-ischemia alters
4
alters distribution
4
lysosomal
4
proteins rat
4
rat cortex
4
hippocampus neuronal
4
neuronal excitotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!