The African Spiny Mouse (Acomys spp.) is a unique outbred mammal capable of full, scar-free skin regeneration. In vivo, we have observed rapid reepithelialization and deposition of normal dermis in Acomys after wounding. Acomys skin also has a lower modulus and lower elastic energy storage than normal lab mice, Mus musculus. To see if the different in vivo mechanical microenvironments retained an effect on dermal cells and contributed to regenerative behavior, we examined isolated keratinocytes in response to physical wounding and fibroblasts in response to varying substrate stiffness. Classic mechanobiology paradigms suggest stiffer substrates will promote myofibroblast activation, but we do not see this in Acomys dermal fibroblasts (DFs). Though Mus DFs increase organization of α-smooth muscle actin (αSMA)-positive stress fibers as substrate stiffness increases, Acomys DFs assemble very few αSMA-positive stress fibers upon changes in substrate stiffness. Acomys DFs generate lower traction forces than Mus DFs on pliable surfaces, and Acomys DFs produce and modify matrix proteins differently than Mus in 2D and 3D culture systems. In contrast to Acomys DFs "relaxed" behavior, we found that freshly isolated Acomys keratinocytes retain the ability to close wounds faster than Mus in an in vitro scratch assay. Taken together, these preliminary observations suggest that Acomys dermal cells retain unique biophysical properties in vitro that may reflect their altered in vivo mechanical microenvironment and may promote scar-free wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2018.10.005 | DOI Listing |
Chembiochem
January 2025
Purdue University College of Engineering, Weldon School of Biomedical Engineering, 723 W. Michigan St., SL 220K, IN 46202, Indianapolis, UNITED STATES OF AMERICA.
Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:
Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFMol Genet Metab
January 2025
Medical Genetics Service, HCPA, UFRGS, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil; InRaras (National Institute of Science and Technology on Rare Diseases), Brazil.
Gaucher disease (GD) is a rare genetic disorder with multi-system involvement. Liver fibrosis is a long-term complication of GD, potentially leading to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. There are currently no validated clinical tools for the monitoring of liver fibrosis in patients with GD.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China. Electronic address:
Natural extracellular matrices (ECM) provide a more accurate simulation of the cellular growth environment, making them excellent substrate materials for in vitro cell culture. The porcine small intestinal submucosa (SIS) is one of the most widely used natural ECM that display superior bioactivity. However, decellularization operations often result in fiber breakage and failure to recover mechanical strength in the SIS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!