A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures. | LitMetric

Superhydrophobic surfaces have gained tremendous attention for icephobic properties, including anti-icing and deicing. The former is about how much a surface can delay the ice formation, whereas the latter is about how easy the surface can let the ice go off after freezing. In this study, superhydrophobic surfaces with different surface roughnesses and wettabilities were tested for both anti-icing and deicing purposes to investigate their correlation in association with the different surface properties. Anti-icing test was conducted by utilizing an icing wind tunnel to see how much ice gets accumulated on the surfaces in a dynamic condition (i.e., impacting supercooled water droplets by forced wind). For the deicing test, sessile droplets were frozen on the surfaces in a static condition (i.e., no wind) and then the shear adhesion forces were measured to disconnect the frozen ices off from the surfaces. The experimental results show that higher anti-icing efficacy does not necessarily mean higher deicing efficacy because of the different icing mechanisms. Although a superhydrophobic surface with a lower depinning force (or contact angle hysteresis) delays the ice accumulation in a dynamic condition more effectively, the same surface can require higher shear adhesion force for ice grown in a static condition where condensation and wetting state of a droplet are the key factors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b02231DOI Listing

Publication Analysis

Top Keywords

anti-icing deicing
12
superhydrophobic surfaces
12
dynamic condition
8
static condition
8
shear adhesion
8
surfaces
6
surface
6
anti-icing
5
ice
5
deicing icephobicities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!