The design of some novel di-(het)arylated-3-pyrido[1',2':1,5]pyrazolo[4,3-]pyrimidine derivatives is reported. The series was developed from 1-aminopyridinium iodide, which afforded the key intermediate bearing two thiomethyl and amide functions, each of them useful for palladium catalyzed cross coupling reactions by alkyl sulfur release and C-O activation, respectively. The two regioselective and successive cross-coupling reactions were first carried out in C-4 by in situ C-O activation and next in C-2 by a methylsulfur release. Process optimization furnished conditions leading to products in high yields. The scope and limitations of the methodologies were evaluated and the final compounds characterized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278517PMC
http://dx.doi.org/10.3390/molecules23112740DOI Listing

Publication Analysis

Top Keywords

cross-coupling reactions
8
c-o activation
8
regioselective synthesis
4
synthesis 24-hetaryl-3h-pyrido[1'2'15]pyrazolo[43-d]pyrimidines
4
24-hetaryl-3h-pyrido[1'2'15]pyrazolo[43-d]pyrimidines involving
4
involving palladium-catalyzed
4
palladium-catalyzed cross-coupling
4
reactions design
4
design novel
4
novel di-hetarylated-3-pyrido[1'2'15]pyrazolo[43-]pyrimidine
4

Similar Publications

Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.

View Article and Find Full Text PDF

Heterogeneous copper-catalyzed Grignard reactions with allylic substrates.

Chem Commun (Camb)

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.

Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.

View Article and Find Full Text PDF

2-Fluorobenzofurans underwent efficient nickel-catalyzed coupling with arylboronic acids through the activation of aromatic C-F bonds. This method allowed us to successfully synthesize a range of 2-arylbenzofurans with various substituents. The reaction, which proceeded under mild conditions, involved β-fluorine elimination from nickelacyclopropanes formed by the interaction of 2-fluorobenzofurans with zero-valent nickel species.

View Article and Find Full Text PDF

Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.

View Article and Find Full Text PDF

Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!