Surface Mounted Device (SMD) assembly machine manufactures various products on a flexible manufacturing line. An anomaly detection model that can adapt to the various manufacturing environments very fast is required. In this paper, we proposed a fast adaptive anomaly detection model based on a Recurrent Neural Network (RNN) Encoder⁻Decoder with operating machine sounds. RNN Encoder⁻Decoder has a structure very similar to Auto-Encoder (AE), but the former has significantly reduced parameters compared to the latter because of its rolled structure. Thus, the RNN Encoder⁻Decoder only requires a short training process for fast adaptation. The anomaly detection model decides abnormality based on Euclidean distance between generated sequences and observed sequence from machine sounds. Experimental evaluation was conducted on a set of dataset from the SMD assembly machine. Results showed cutting-edge performance with fast adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211082 | PMC |
http://dx.doi.org/10.3390/s18103573 | DOI Listing |
J Neural Eng
January 2025
Department of Neuroscience, Northwestern University, 303 East Chicago Ave, Chicago, Illinois, 60611, UNITED STATES.
Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Neurobiology, University of Chicago, IL, USA.
Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).
View Article and Find Full Text PDFMed Biol Eng Comput
December 2024
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions.
View Article and Find Full Text PDFUnderwater sensors and autonomous underwater vehicles (AUVs) are widely adopted in oceanic research activities. As the number of underwater sensors and AUVs is growing quickly, the bandwidth requirements are increasing accordingly. In this work, we put forward and demonstrate a large field-of-view (FOV) water-to-air unmanned aerial vehicle (UAV) based optical camera communication (OCC) system with gated recurrent unit neural network (GRU-NN) for the first time to the best of our knowledge.
View Article and Find Full Text PDFSensors (Basel)
October 2024
College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!